Shiloh’s Raid:

1541 Relative File Bug Spray

David Shiloh
Eugene, Oregon

© 1986 by David Shiloh

First we squashed the SAVE@ bug with Phillip Slaymaker’s article. . .
now David Shiloh kills the dastardly relative file bug — right at its roots!

It appears that there has not previously appeared in print a
dissection of the huge relative file bug in the DOS, although the
save" @0:bug" was a major controversy for years: the reason
of this escapes me somehow, since relative files seem more
major in relation to practical uses of the 1541. . .how have the
gurus been distracted from such a serious problem with the
DOS?

Dr. Gerald Neufeld, whose Inside Commodore DOS has proved
to be indispensable, mentions the bug in his 1541 User’s Guide,
correctly locating it in the “position” command and offering an
effective fix that exacts a 30 %-40% access-time penalty. While
his fix reaches two of the specific DOS failures that are in-
volved, his discussion does not define the conditions under
which problems occur, and his test program yields results that
establish the existence of the bug but are otherwise almost
completely misleading. Until now, this has been the most
comprehensive mention of this bug.

The Position Command

The actual write to a relative file uses the same PRINT#
command as any other write operation. With relative files,
however, the write goes to a specific record within the file: DOS
has to be positioned to the record you want to write to, and to
the spot within that record where you want to begin writing.
This is done with the “position” command, sent on the DOS
command channel; the actual information to be written to that
record is sent to the relative file following the position com-
mand. The position command is sent with the syntax:

print#FN, " p " chr$(96 + SA)chr$(lo)chr$(hi)chr$(po);
where “p” is the actual “position” instruction, followed by

three parameters and a final semicolon (*;”) to suppress the
sending of a carriage return after the command string.

The chr$(96 + SA) sends DOS the secondary address (SA) of the
relative file OPEN command, which is used by DOS to assign
internal channels and buffers for the relative file operations:
this value is OR’'d with 96 ($60) to form the byte sent to the
DOS.

The chr$(lo) and chr$(hi) are one parameter, the record num-
ber (nu): lo is the low byte of the record number in low-byte/
high-byte format, “hi” is the high byte, taken by

hi =int(nu/256):l0 = nu-hi*256

The chr$(po) is the exact position within the relative record
where the write is to begin, and is an optional parameter.
However, unless you suppress the carriage return that follows
the command string, this parameter chr$(po) must be included:
otherwise, DOS will read the chr$(13) carriage return as the
parameter and point there.

When the position command is sent, DOS retrieves the record
sector you have addressed into its RAM buffers and sets the
relative file channel to the selected position in the record. The
same “position” command is used to position the relative file
channel for reading from the file.

The Bug

Theoretically, the “position” command will allow you to posi-
tion to any character in any record. In fact, this is true only for
reading the file: for writing, it is 100% reliable except under
certain conditions in which it is 100% unreliable.

When DOS receives a position command, it checks to see
whether the desired bytes are already in one of the two buffers
allocated for records. If the necessary sector is not in the
“active” buffer, but the immediately preceding file sector is,
then DOS simply “toggles” the buffers and makes the one
containing the necessary sector active: unless it just toggled
during the last access for that reason. This convenience also
sets up the bug: the fatal sequence is as follows:

1. A write is performed that runs from one sector (A, in buffer a)
to the next (B, in buffer b). During the write, DOS toggles
from buffer a to buffer b and makes a note of the toggle.

2. A second write is performed to a record that is entirely
contained on sector B in the now-active buffer b. This write
does NOT toggle, and DOS makes a note of the no-toggle.
Now the bug is waiting.

Jan. 1987: Volume 7, issue O4

3. Athird write is directed to the sector following B; and instead
of fetching sector C, DOS toggles from buffer b to buffer a
since no toggle was performed during the last access.

Unfortunately, sector A is still in buffer a and this third write
goes to exactly the same place on sector A that it should have
gone to on sector C —— and often overwrites two records, the
last characters of one and the first characters of the next. Thus
three records are in jeopardy: these two and the one that did
not get written to sector C.

The program listing below demonstrates the bug, then sprays it
with Shiloh’s Raid.

The program creates a relative file of 100 records for each
record size from 42 through 88, spending about 10 minutes
with each (6 minutes compiled). Since the entire program runs
over 8 hours, I set it up to rotate among my three 1541 drives,
which are hardware set to device numbers 8, 9 and 10. The
program will rotate among any number of drives by changing
the ‘nd = 1’ in line 1140; the lowest drive number used can be
changed from 8 by modifying the ‘sd = 8’ in line 1130. If you
are using just one drive, you may want to use a cooling fan, or
run the test for fewer trials (reduce the value of ‘el’ in line 1120).
If you are using the program with a non-Commodore printer,
check the control codes in lines 1660, 1830 and 2010 (control-
j, chr$(10) for a line-feed) for compatibility with your interface.

Also, in line 1090-1120, “nr=100" determines the size of the
relative file (number of records); “nt=15" is the number of test
strings written to the file (it must be a multiple of 15); sl=41 is
the record length of the first test file; and el=88 is the record
length of the last test file (the entire test is performed using files
with record lengths from ‘sl’ to ‘el’)

Lines 1880-2050 reset the drive, short new the disk, open a
relative file, force creation of ‘nr’ empty records, and then write
a unique identifying string to each 8-character field of every
record, in the format

nnnn/ffx
where nnnn is a four-digit record number (with any leading
zeroes) and ff is a two-digit field number (with any leading
zero). Thus every record looks like this:

0123/01+0123/02+0123/03+0123/04+0123/05+012

(this is 43-character record #123), with a longer final field if the
record length is not a multiple of 8.

Then the fun begins. . .three passes are made through the file.
Pass 1 selects a random field of a random record and tests to

insure that the write (which goes to the end of the record) spans
two sectors, then constructs a string to overwrite the selected

record fields with the identifying string already there. (In
literally over a millicn trials, we found that the initial write to
the records always works. If you're skeptical, put a ‘GOSUB
1600’ in line 2060 to verify the contents of all records.) This
pass then calls the position routine at line 1420, and the write is
sent to the disk. A second write is sent to the next record, which
lies entirely in the sector where the first write ended; and a
third to a record lying entirely in the next sector in the file.

Pass 1 will produce an error on every third write, corrupting
one or two records and leaving the “updated” record un-
touched. It may write the same series of three more than once
during the pass: a detailed report is sent to the printer for study.

The first (identifying) field of each re-write, the number of the
sector (in file sequence) and the initial byte (2-255) of the write,
are stored in an array in the order written. On completion of
nt/3 sets, the entire file is read by the subroutine at line 1610;
and on detection of a variance, this array is sent to the printer
from line 1510 followed by a report on the corrupted record (its
number within the file, the starting sector and byte) and the
actual contents from the disk. Subsequent variances are also
printed with their identifying data: this information enables
you to see exactly what was overwritten, by which write in
which set of three; as well as what might have been restored by
a later write and any duplicated sets (duplication confuses the
error count). The printer output is formatted to produce a one-
page report on each record size (two if needed).

Shiloh’s Raid

We have been able to develop a short subroutine to anticipate
the bug and apply a fix only when it is needed — less than 1%
of the time — and otherwise use the position command as
already described, without the 30%-40% time penalty. This
subroutine is situated in lines 1380 through 1470 and includes
the usual position routine and a variation on Dr. Neufeld’s
“point twice and wait” fix, which it selectively incorporates.

Line 1380 is the write entry point: if the immediately previous
call to the position routine spanned two sectors, then it identi-
fies the second and jeopardized sectors arising from that call
and sets a counter to be active during the next two accesses.
Line 1390 (the read entry point since reads do not need
protection but do need to set a flag) calculates the end position
of the current record within the record sector and, if a split
record, the start position; and flags a split-write condition
when the current access spans two sectors. This is the flag
detected during the next position call in Line 1380. Line 1420
(the “index search” entry point, when a single character is to be
retrieved for a search comparison, since a single-character
retrieval cannot span two sectors) calculates the high and low
bytes of the record number; and if a jeopardy flag has been set
up by one of the two previous calls to the position routine,
checks the sector of the current access against the sectors
identified in line 1380; pointing once and setting up the wait

Jan. 1987: Volume 7, Issue O4

flag when an endangered sector is being accessed. Line 1450
sends the position command and, if the wait flag is set, waits 30
jiffies before returning from Line 1470.

Pass 2 performs exactly like Pass 1 except that it calls Shiloh’s
Raid at line 1380 and produces no errors.

Pass 3 makes 20*nt random selections, not writing a sequence
of records unless they occur as a result of the random selection,
and counts the number of times (1) that a flagged condition
arises and (2) that a full fix is required. Although actual relative
file use is not usually as random as this, the 1-2-3 sequence of
passes 1 and 2 is just as untypical in the opposite direction. Pass
3 does, however, give some idea of how often Shiloh’s Raid
calls the delay fix, sending the count to the printer at the end of
the pass. Our results depended on the size of the file: fewer
waits with larger files, 0.08 % in half a million accesses of disk-
sized (664-block) files.

The time involved in the flagging algorithm also varied with
the size of the file. Calls to Shiloh’s Raid cost from 0.039
seconds per call for larger files to 0.048 seconds per call for
smaller files: smaller files more often randomly encountered
the flag conditions. Enlarge the file and change the subroutine
call for Pass 3 in line 2210, and you will get an idea of how often
C-64/1541 users encounter this bug: since it bites on 100% of
these occasions, the two-jiffy price of reliability is low.

Dr. Neufeld’s fix — point a second time and wait half a second
— forces DOS to look at the active buffer, where it finds the
wrong sector, writes that (previously changed) sector back to
the disk, and then fetches the correct sector. The wait is
necessary because without it, an immediately following
PRINT# command causes an ATN interrupt that is waiting (with
a higher IRQ priority than the fetch job) to take over when the
DOS comes back from writing the old sector, before the fetch
job is put in either the job queue or the buffer’s track and sector
pointers. The write is performed to the buffer, the buffer dirty
flag is set, the poisoned sector is written over the last write-to-
disk with the mis-directed information, and then the correct
sector is fetched from the disk into the buffer. . . but too late.

Although the position command is entirely reliable for reading
from the file, the bug may bite on a write that follows a read
access, making the detection algorithm necessary on read
accesses since it flags a condition about to arise. Shiloh’s Raid
still allows retrieval to the screen of an 85-character record in
an average 1.17 seconds from a disk-sized file.

With Shiloh’s Raid in place, the position command is 100%
reliable. Now, perhaps CBM will consider an upgrade chip,
since the 1541 outsold their wildest expectations and is still
selling: I'd prefer that to a shiny new plastic face. I need three. .
. just send them to me at PO Box 10976, Eugene OR 97440, and
I'll express my complete surprise and profound astonishment
in an appropriate fashion. . .

CN
JN
DH
MJ
I
GE
GH
1B
MK
NM
NA
DK
BI
LL
JH
KN
MP
PD
CH
PM
EC
AP
L
IH

EL

OP
AG
F
JJ
JL
EE
BF
MC
FM
IF
KL
DA
GD
PM
LO

AH
JC
PL
FH
IC

CP
GH
KN
MD

Shiloh’s Raid: The Program

T OO0 rEI 5 % sk %k s sk %k ok 5k sk 3k 3k ok sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok
1010 remx " Shiloh’s Raid "
1020 remx this program demontrates
1030 rem= the 1541 reiative file bug,
1040 remx and gives an efficient way
1050 rem= to work around it.
1060 rem= (c) 1986 david shiloh
TOT O 1T 5 % sk sk sk sk ok sk sk ok ok sk ok ok s ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
1080 :
1090 nr

* * * ¥ * *

100:rem* number of records
1100 nt = 15 :rem* number of writes

1110 sl 41 :rem+ start record length
1120 el = 88 :remx* end record length

1130sd = 8 :rem= first drive number
1140nd = 1 :rem* number of drives
1150 ed=sd + nd-1

1160 :

1170 gosub 1710: rem= initial prompts

1180 goto 1810: rem* continue main routine
1190 rem=* subroutines follow
1200 :
1210 rem=x create formatted output **
1220 r$(ct) = eft$(r$,7) + " ;"
1230 r$(ct) = r$(ct) + right$(" "
+str$(q% +1+(>Qq),3)+ ":"
1240 r$(ct) = r$(ct) + leftS(mid$(str$(g-I + p
+1-(g-1+ p<1)*254),2) + " [3 spcs] " ,4)
1250 return
1260 :
1270 rem=*=* create record contents *x*
1280 r$="": n$ =right$(z$ + mid$(str$(n),2),4)
1290 forfs=fto nf+1
1300 fs$ =z$ + mid$(str$(fs),2)
1310 r$=r$+n$+ "/" +right$(fs$,2) + " * "
1320 next
1330 r$ =left$(r$,I-8+(f-1))
1340 return
1350 :
1360 rem=* shiloh’s raid subroutine *x*
1370 rem (write relative record)
1380ifsrthenrli=sr+1:r2=sr+2:r=2
1390 g=n*l: Q% =q/254: g =0-q%=+*254
. sr=q%=*—(1>q)
1400 if sr then sr=q%=-(q-1+ p<1)
1410 rem# entry point for no-fix write
1420 h% =n/pg: lo = n-h%=*pg
1430 rem point twice & wait if needed
1440 ifrthenr=r-1:rs=rs+r:.ifq%=r1 orqlo=r2
then gosub 1450: w=162
1450 print#1, " pB " chr$(lo)chr$(h%)chr$(p);
1460 if w then poke w,2: wait w,32: w=0:c=Cc+1
1470 return
1480 :

75

Jan. 1987: Volume 7, Issue O4 |

NG | 1490 rem=*=* print bad record message *+* DJ | 1970 print "est "LI$ " x " mid$(str$(nf),2)nr;b
MN | 1500 if e goto 1540 : "sectors " nt" testiel "
GG | 1510 print#7,r$(0) AD | 1980
NA | 1520 for t=1to nt+ 1: print#7,r$(t);: next OO | 1990 rem- initialize all records -
EA | 1530 print#7: x=x+nt/5+3 CJ | 2000 fort=0to nt: r§(t)="": next
LK | 15640 e=e+1: gq=(n-1)*I+1: g% =0q/254 PB | 2010 print#7, "ntest"l;nr"records“ nf"fields" b
: q=0-q%*254 "sectors" nt" re—writesl ¥
BP | 1550 if n<>sn then print#7, " record " n " sector” Cl | 2020 print" setting up the file. . .": gosub 1420
Q%+1"byte"q+1:te=te+1: x=x+1 : print#2
OJ | 1560 sn=n+1: print#7,ck$: x =x+ 1-(>80) EJ | 2030 for n=1to nr: gosub 1280
BA | 1570 if ps<3 then gosub 1420: print#2,r$;: n=n-1 AF | 2040 print" writing "1eft$(r$,20)". . .Q"
IE | 1580 return : gosub 1420
KK | 1590 : NC | 2050 print#2,r$;: next
OJ | 1600 rem#* read and check all records OD | 2060 print
DG | 1610 print: p=1:f=1:e=0:te=0 AG | 2070 rem- write random records —
AA | 1620 forn=1to nr: print" reading”;n AN | 2080 for ps=1 to 3: rem three passes
MD | 1630 gosub 1280: gosub 1420 CJ | 2090 r$(0) = " pass "+ str§(ps) + " re-writes:”
IL | 1640 input#2,ck$: if ck$<>r$ then gosub 1500 HI | 2100 ne=0: c=0: rs=0: sr=0: print r$(0)
GH | 1650 next HM | 2110 rem- write nt records -
MK | 1660 print#7, " n "r$(0)te " errorsin" e " records, " AF | 2120 for ct=1 to nt—(ps =3)*19+*nt
rs"calls, " ¢ "to wait routine " EH | 2130 if ne then n=n+ 1-(ne =2)*int(kn): goto 2180
AG | 1670 print"npass ":ps;":"te;"badto";e; LC | 2140 n=int(rnd(1)*(nr-kn) + 1): f=int(rnd(1)*nf + 1)
"records";rs; "calls";c cp=8*f-7
MK | 1680 return GG | 2150 if ps=3 goto 2190
OA | 1690 : JK | 2160 gosub 1390: if sr=0 goto 2140
EJ | 1700 rem##* print initial prompts ** OA | 2170sr=0
HO | 1710 print" Output to (S)creen or (P)rinter ?" KB | 2180 ne=ne+ 1: if ne>2 then ne=0
KH | 1720 get a$: if a$<>"p" and a$<>"s" goto 1720 HH | 2190 gosub 1280: print" writing " left$(r$,7);ct
NF | 1730 sp=3:ifa$="p" thensp=4 Il | 2200 rem* write rec with or w/o "raid"
KG | 1740 print" Insert a scratch disk and HJ | 2210 on ps gosub 1420, 1380, 1380: print#2,r$;
press RETURN. " LC | 2220 if ps<3 then gosub 1220
ME | 1750 get a$: if ag<>chr$(13) goto 1750 DN | 2230 next ct
MP | 1760 return IN | 2240 gosub 1610:rem verify written records
OF ' 1770 KA | 2250 next ps
|G | 1780 e sk s s s sk sk ok sk ok sk sk ok ok sk ok ook ok ok ok IE | 2260 :
'CN | 1790 rem** mainline follows: *** CP | 2270 r$="full waitin" + str$(int(50+c/nt)/10)
MH | 1800 remis s ks ks s s sk stk ook ok ID | 2280 r$=r$+ "%" +str§(nt*20) + " pass 3
HH | 1810 pg=256: I$ =chr$(157): s=rnd(-t)): d=sd accesses”
IH | 1820 open 7,sp,7: rem printout file DA | 2290 print r$: print#7,r$
GB | 1830z%="000": dim r$(nt+ 1) MO | 2300 rem —page printer & do next file—
r$(nt+1)= "nerrors: ! MB | 2310 for t=x to 55-66*(x>54): print#7: next t
EK | 1840: OG | 2320 d=d +1: if d>ed then d =sd: rem for
HC | 1850 rem- do for all record lengths — multiple drives
JC | 1860 for|=slto el CA | 2330 nextl
OM | 1870 kn=254/| NO | 2340 close 1: close 7
JA | 1880 rem- reset drive — OC | 2350 end
AB | 1890 closel: openi,d,15," ui": for t=1 to 500: next t
ID | 1900 b=int(nr«l/254) +1: n=nr: nf=int(/8): f=1: p=1
KO | 1910:
DB | 1920 rem- new disk & open rel file —
CO | 1930 x$ = "O:test” +str$(l): print#1, " n" x$
LH | 1940 close2: open 2,d,2,x$+ " ,I," +chr$(l): ps=0
ix=0
GO | 1950 print " §SfeleleiShiloh’s Raid: Relative File
Bug Spray "
GF | 1960 print " (c) 1986 by David Shiloh "
The Transacior 76 Jan. 1987: Volume 7, Issue 04

