Serial I/O in Power C

An RS232 function package for C programmers

by W. Mat Waites

One of the most exciting areas of use for the C64 is cheap
telecommunications. The ability to communicate with other
machines via modem or a hardwired connection adds greatly
to the power and value of any computer. The C64 has benefit-
ed more than other computers from telecommunications be-
cause of Commodore’s supplying modems that are very af-
fordable.

Developing telecommunications programs is interesting and
fun, but the choices of language for that development have
been very few in the past.

Interpreted BASIC is too slow even for 300 baud communica-
tion. Compiled BASIC is much faster, but generally utilizes the
BASIC interpreter’s garbage collection routines for string stor-
age maintenance. The result of this is that the system locks up
every few minutes while the string space is being recovered.
This will drive you insane after a while.

Assembly language has been the most viable choice for writ-
ing programs that would be limited in speed only by the Ker-
nal and the hardware. These assembly programs are very long
and difficult to modify, however. The lack of a standardized
parameter passing convention and a linker makes it difficult to
write functions in assembler that are reusable and sharable
with other software developers.

C has come to the rescue with a language that is higher level
than assembly, but without the run-time overhead of BASIC and
other interpreted languages.

Commodore 64 serial I/O -

The C64 actually has a very sophisticated serial [/O system for
a microcomputer. It is interrupt driven, which means that in-
coming characters are-taken in by the Kernal even if your pro-
gram is not quite ready for them. Even such popular systems
as MS-DOS do not have this feature. MS-DOS terminal programs
must supply their own interrupt-driven code to create this kind
of functionality. The Kernal takes care of all of the low level
details of accepting characters and sending them out.

Most computers have specialized chips to perform the act of
sending out and receiving individual characters. The generic

name for this kind of device is Universal Asynchronous Re-
ceiver/Transmitter (UART). The C64 emulates the activities of
a UART in software. The positive side of this is that software is
more flexible than hardware. The C64’s serial 1/O is at least as
configurable as a UART and is more configurable than some.
The negative side is that software, especially 1 MHz 6502
software, is slow. The C64 Kernal routines are barely able to
keep up at 1200 baud; 2400 baud is not reliable at all.

The two big kludges

There is a problem with the Kernal-supplied serial routines.
The timing values supplied for 1200 baud are not exactly cor-
rect! The ‘width’ of the bits coming in to the port don’t match
up with what the Kernal expects. By supplying new and im-
proved timing values, we can tune the routines to expect the
correct bit widths.

This ‘bit width fix’ introduces another problem, though. With
the best possible values in place for receiving characters, there
is a problem with transmitting characters. The ‘stop bit’ (the fi-
nal bit in a serial character transmission) is too ‘narrow’. That
is, it doesn’t last long enough for the machine at the other end
to recognize it reliably. This is not really a problem with sim-
ple terminal emulation because no one types fast enough to
cause multiple characters to be output one immediately after
another. ‘

The short stop bit does cause problems with file transfers.
When a block of data is sent, the characters follow one another
in rapid succession. The receiver is sometimes still waiting for
the end of the stop bit when the next character arrives. This
kind of synchronization problem is called a framing error.

To break down this final barrier to reliable 1200-baud commu-
nication, a second kludge is introduced. A delay loop is used to
wait for each character to be clocked out before another is
added to the output buffer. This allows the receiving computer
to recover from one character before the next arrives.

Problems with C

In applying C to telecommunications, the first hurdle to over-
come is interfacing to the Kernal for several functions. Most

Transactor

56

December 1989: Volume 9, Issue 2

obviously, the serial 170 must be accessed from C. Methods for
doing this are not documented in either the Abacus Super-C or
Pro-Line/Spinnaker Power C manuals (at least none that I
have seen). Other functions that must be implemented include:
getting a keystroke without ‘hanging’, producing a cursor on
the screen, doing cursor movement, and providing timing
functions for communications protocols.

This article introduces a terminal program written in C and
provides the details of the implementation of serial [/O in Pow-
er C. (Note: due to space limitations, only the serial and Xmo-
dem routines themselves are included in the C source listings
accompanying this article. The full source for Mat's terminal
program, and the program itself, will be included on the
Transactor disk for this issue. -Ed.)

‘Packages’ of functions

Power C provides an excellent linking facility that allows the
programmer to divide his application into as many compilation
units as desired. Software development can be made more effi-
cient by writing subsystems that are independent of each other
and placing them in separate files. In this way, several differ-
ent applications may call the same ‘package’ of functions.

The reusablility of software is very important if you ever in-
tend to develop a software system of any size. You simply can-
not start from scratch at the beginning of every project and ex-
pect to do large projects.

The package discussed here contains all of the functions and
data structures necessary for serial [/0 in Power C. It allows
you to open the serial device, set the port parameters, write to
the serial device, read from the device, and close the device.

The data structures include the input and output queues and
the current state of the port.

Opening and Closing the Device

Openserial() opens the C64 ‘file’ for serial communications.
Notice that the BASIC-style open() call is used so that a sec-
ondary address may be supplied if desired. RS is the symbol
for the stream number used for the serial port, 6. With the BA-
SIC-style open, the stream numbers 5 through 9 should be used
to avoid conflict with the automatic stream-number allocation
done by the higher-level I/0 functions.

The closeserial() function simply does a BASIC-style close on
the RS stream.

Moving the buffers

The other activity carried out by the openserial() function is
moving the buffer pointers to point to the buffers that have
been declared for the serial port queues. These are named in-
buf and outbuf. The Kernal allocates the buffers initially at the
top of BASIC memory space, but this falls in the middle of

Power C space. We simply move the pointers to point to space
that we have allocated for this purpose; the rest of memory can
then be used without fear of overwriting the input and output
queues. This gives the added benefit of allowing the easy ex-
amination of the queues without reading characters from them.

Setting the port parameters

After the port is opened, the baud rate and other parameters
must be set. We could have specified the baud rate at open
time, but we want to be able to change the baud rate at any
time so we must work at a lower level.

The setserial() function allows the caller to set the baud rate,
the number of bits per character, the number of stop bits, and
the parity. This function may be called at any time to change
the parameters. The three baud rates implemented are 300,
450, and 1200. Many 300 baud modems will function reliably
at 450 baud, and many BBSs support this speed.

Kludge #1 is included in the timing values supplied in this
function. The 1200 baud values seem to work well, but they
may be tuned for the best performance with your set-up. The
61 may be varied up or down by about 4 or 5.

The stopbits may be set to either 1 or 2. The bits per character
may be set to anything from 5 to 8. The parity is set with a
bitmap value corresponding to the 3 bits described in the Com-
modore 64 Programmers Manual for selecting parity.

Table of parity values

0 - disabled

1 - odd parity
3 - even parity
5 - mark parity
7 - space parity

Reading and writing

The getserial() function is called to get a character from the se-
rial port. If no characters are available, a -1 is returned. Notice
that if the Power C getc() function were called here, the func-
tion would not return until a character had come in the serial
port. If you are writing a terminal program or BBS, you do not
want to ‘hang’ waiting on characters. You simply want to get it
if it is there, or return if it is not.

The putserial() function is called to output a character to the
serial port. This function implements kludge #2. There is a de-
lay loop that was shortened until framing errors began to oc-
cur, After the loop it simply calls the Power C putc() function
to output the character.

Other functions in the package

Functions are also provided in this package for some other
Dos-related activities. Functions are provided for accessing the

Transactor

December 1989: Volume 9, Issue 2

keyboard without hanging, for checking to see if the‘logo’ key
is pressed (I use this for an attention key), to wait for a given
number of seconds, and to read the disk error channel.

Notice that Kernal calls must be made to achieve some of this
functionality, but with these functions making the calls for
you, you don’t need to directly call the Kernal in applications.

Using the package

To use this kind of a package you simply compile it as you
would any other function in Power C.

This will produce a file - “dos.0”’. When you link your appli-
cation, simply link in “dos.0” and you have serial /0. Note
that you will only compile it once and then link it in whenever
you need it. This is a great advantage over BASIC compilers
that force you to recompile your entire program every time
you make a change.

The terminal program

Included on the disk is a simple terminal program that calls
this serial I/0 package. It implements a sprite cursor and Xmo-
dem file transfers.

/¥ dos.c - operating system stuff: *robuf = otbuf;
disk support }
serial i/o
kb ifo
timers */
[* W Mat Waites - Sept 1988 */

closeserial ()

/* closeserial() - close serial port */

The Xmodem routines are very portable. The Commodore
specific /0 functions are separated out and should make it
very easy to move the Xmodem part to another operating
system.

Ideas for future development

With the serial 1/0 stabilized, it shouldn’t be too difficult to add
other protocols: Xmodem CRC, Xmodem batch, Kermit,
Punter, and so on. The most difficult thing about implementing
some of these protocols is finding definitive documentation.
Implementing a BBS is also a possibility.

The Commodore 64 still has a lot of life left in the area of soft-
ware development. Hopefully, this article will help spur inter-
est in C programming on the 64. Drop me a note if you have
any questions, or if you write any interesting applications with
the serial package.

I can be contacted on Usenet (!gatech!emcard!mat) or by mail
at this address:

W. Mat Waites
1264 Brandl Drive
Marietta, Georgia 30060

/¥ set baud rate */

*m5lajb = 256 * hibyte[indx] +
lobyte[indx];

*baudof = (*m51ajb)*2 + 200;

[* stopbits */

close(RS); if(sb<1 _sb>2)
#include <stdio.h> } {
sb=1;
/* 5-9 may be used with "basic" open */ /* 300, 450, 1200 implemented */ }
fidefine KB 5 sb--;
#idefine RS 6 static short hibyte[3] = { 6, 4, 1};

static short lobyte[3] = {68, 12, 61};

/* kludge for reliable 1200 baud */
fdefine KLUDGE 40

/* kernel routines */ int bd, bpc, sb, par;

fdefine CHKIN Oxffcé {
fidefine GETIN Oxffed short *mSlajb = 0x0295;
f#define TKSA O0xff96 short *baudof = 0x0299;
f#define ACPTR (0xffa5 char *mSlctr = 0x0293;
f#define TALK Oxffbd char *m5lcdr = 0x0294;
#define UNTLK 0xffab char *bitnum = 0x0298;
unsigned indx;
/* input and output serial buffers */
static char inbuf[256], otbuf([256]; switch (bd)
{
[* serial interface functions */ case 300:
indx = 0;
/* openserial() - open serial port */ break;
openserial () case 450:
{ indx = 1;
short *ribuf = 0x00£7; break;
short *robuf = 0x00£9; case 1200:
indx = 2;
/* open serial port */ break;
open(RS, 2, 0, ""); default:
indx = 0;
[* move pointers to buffers */ break;
*ribuf = inbuf; }

/* default to 300 baud */

[* bits per char */
if(bpc < 5 _ bpe > 8)

[* setserial() - set serial port */ {
setserial (bd, bpc, sb, par)

bpc = 8;

}
*bitnum = (char) (bpc + 1);
bpc = 8 - bpc;

[* parity */

if(par < 0 _ par > 7)
{
par = 0;

}

/* put bpc, sb, and par in regs */
*mSlctr = (char) ((bpc << 5)
_ (b« 7));
*mbledr = (char) (par < 5);
}

/¥ getserial() - char from serial port */
getserial ()
{

int ch;

char *rsstat = 0x0297;

ch = getonechar (RS);

Transactor

58

December 1989: Volume 9, Issue 2

[* check for empty buffer */
if((*rsstat & 0x08) == 0x08)
{
return -1;
}
else
{
return ch;
}
}

/* putserial () - char to serial port */
putserial (ch)
char ch;

{

int i;
putc(ch, RS);

/* delay loop for 1200 baud kludge */
for(i=0; i<KLUDGE; it+)

{

}

/* keyboard interface functions */

[* openkb() - open keyboard */
openkb()

{
char *rptflg = 0x028a;

open(KB, 0, 0, "");
/* let the keyboard repeat */
*rptflg = 0x80;

}

/* closekb() - close keyboard */
closekb()
{
close (KB) ;
}

[* getkb() - get char from keyboard */
getkb()
{
return getonechar (KB);
}

/* charsing() - # available kb chars */
charsing()

{
char *ndx = 0x00c6;

return (int)*ndx;

}

[* chkstop() - check for <C=> key */
chkstop()

{
char *shflag = 0x028d;

return(*shflag == 0x02);

/* getonechar() - get char from chan */
static getonechar (channel)

int channel;

{

char ac, xc, yc;

%c = (char)channel;

sys (CHKIN, &ac, &xc, &yc);
sys (GETIN, &ac, &xc, &yc);
return(int)ac;

/* disk i/o functions */
#define SADDR 0x6f

/¥ diskerr() - read error channel */
char *diskerr(disk)
int disk;
{
int cc;
char ac, xc, yc;
static char msgbuf[41];
char *mp;
char *second = 0x00b9;
char *status = 0x0090;

/* tell drive to talk */
ac = (char)disk;
sys(TALK, &ac, &xc, &yc);

/* tell it what to talk about */
ac = (char)SADDR;

*second = SADDR;

sys(TKSA, &ac, &xe, &yc);

/* read in the response */
mp = msgbuf;
for(;;)

/* get byte from bus in acc */
sys (ACPTR, &ac, &xc, &yc);

if(ac = "\r')
{
break;
}
*mp = ac;
mptt;

}
tmp = \0;

/* tell drive to shut up */
sys (UNTLK, &ac, &xc, &yc);

return (msgbuf) ;

/* timer functions */
unsigned getclock();

/* sleep() - sleep for seconds */
sleep (usecs)
unsigned usecs;
{
setclock ((unsigned)0) ;

while(getclock() < usecs)
{
}
}

struct clock /* struct matches CIA */
{
char tenths;
char seconds;
char minutes;
char hours;

|5

/* setclock() - set timer clock */
setclock (usecs)
unsigned usecs;

unsigned bsecs;
struct clock *clockl = 0xdc08;
char *clmode = OxdcOf;

clmode &= 0x7f; / mode is clock */
if (usecs > 59) usecs = 59;

/* convert secs to bed */
bsecs = usecs$10 _ ((usecs/10)<<4);

clockl->hours = 0;

clockl->minutes = 0;

clockl->seconds = (char)bsecs;
clockl->tenths = 0; /* free clock */

}

/* getclock() - get current clock secs */
unsigned getclock()
{

unsigned usecs;

char junk;

struct clock *clockl = 0xdc08;

junk = clockl->seconds;
usecs = (junk & 0x0f) +
10 * (junk >> 4);

junk = clockl-dtenths; /* free clock */

return usecs;

}
/* end of file ¥/

/* xmodem.c - xmodem protocol */
/* W Mat Waites - Sept 1988 */

#include <stdio.h>

/* number of retries, timeouts */
#define RETRY 5

#define TOUT 2

#idefine BTOUT 10

/* protocol characters */
#define SOH 0x01
#define EOT 0x04
#define ACK 0x06
#define NAK 0x15
#define CAN 0x18

#define RECSIZE 128
char *diskerr();

int rec;
int tries;
int timeout;

/* buffer for data infout */
char buffer[132];

/* sendfile() - send file via xmodem */
sendfile(fname, disk)
char *fname;
int disk;
{
int st;
int ch;
char errbuf[41];
char locname([21];
char *status = 0x0090;
FILE dfile;

Transactor

59

December 1989: Volume 9, Issue 2

rec = 1;

strepy(locname, fname);
strcat (locname, ", r");

/* attempt to open file for read */
device(disk);
dfile = fopen(locname);

/* check for disk error */
strepy (erzbuf, diskerr(disk));
st = atoi (errbuf);

if (st >= 20)

{

close(dfile);

showerr (fname, errbuf);
return(0);

}
printf("$s opened\n", fname);

/¥ clear input buffer */
while(getserial() >= 0)
{
}

tries = RETRY;
for(;;)

{
printf ("Synching. ..\n");
if (chkstop())

{
close (dfile);
return(0);

}
ch = getchtmo(BTOUT);
if (timeout)

printf ("Timeout\n") ;
tries--;
if (tries > 0)

{

continue;

}
close(dfile);
return(0);

}

if(ch == NAK)
{
break;

}
printf("Strange char [$02%]\n", ch);
}

printf ("Synched\n");

/* send the file */
while(fillbuf (dfile, buffer))

{
if(chkstop())

{
close(dfile);
return(0);

}

if ('txrec(buffer))
{
close(dfile);
return(0);
}

}

/¥ tell 'em we're done */
putserial (EOT);
for(;;)

{

ch = getchtmo(TOUT) ;
if (timeout)

{

putserial (EOT);

}

else
{
if(ch == ACK)

{
printf("sent EOT\n\n");
break;
}
}
}

close(dfile);
printf("$s transferred\n\n", fname);
return(l);

}

/* recvfile() - recv file via xmodem */
recvfile(fname, disk)
char *fname;
int disk;
{
int st;
int ch;
int i;
char rl, r2, dt;
int response;
char rchk;
char locname[21];
char errbuf[41];
unsigned chksum;
FILE dfile;

rec = 1;

strcpy (locname, fname);
strcat (locname, ", u");

/* attempt to open file for write */
device(disk);
dfile = fopen(locname);

/* check for disk error */
strepy (errbuf, diskerr(disk));
st = atoi (errbuf);
if (st >= 20)
{
close(dfile);
showerr (fname, errbuf);
return(0);

}
printf("ts opened\n”, fname);

/* clear input queue */
while(getserial() >= 0)
{
}

[* transfer file */
response = NAK;
for(;})

/* get a record */
printf("Record $3d ", rec);
tries = RETRY;

for(;;)

{

if (chkstop())
{
close(dfile);

return(0);

}

/* shake hands */
putserial (response) ;
/* get 1st char */
ch = getchtmo(TOUT) ;
if (timeout)

{

tries--;

if (tries > 0)

{

continue; /* try again ¥/
printf("Can’t sync w/sender\n");

close(dfile);
return(0);

}

if(ch == SOH) /* beg of data */
{
break;

}
else if(ch == EOT) /* done */

printf ("got EOT\n\n");

close(dfile);

putserial (ACK) ;

printf("%s transferred\n\n",
fname) ;

return(l);

}

else if (ch == CAN) /* cancelled */
{
close (dfile);
printf ("Transfer cancelled!\n");
return(0);
}

else

{
printf("Strange char [%02x]\n", ch);
gobble(); /* clear any weirdness */
response = NAK; /* and try again */
}

}

response = NAK;
rl = getchtmo(TOUT); /* record number */
if (timeout)

printf("TMO on recnum\n");
continue;

} .
/* get 1's comp record number */
r2 = getchtmo (TOUT);
if (timeout)

{
printf("TMO on comp recnum\n’);
continue;

}

/¥ get data */
chksun = 0;
for(i=0; i<RECSIZE; it+)

{
dt = getchtmo(TOUT) ;
if (timeout)

{

break;

}
buffer(i] = dt;
chksum += dt;
chksum &= Oxff;

}
/* check for data timeout */
if (timeout)

{
printf("TMO on data\n");
continue;

Transactor

60

December 1989: Volume 9, Issue 2

}

/* get checksum */

rchk = getchtmo (TOUT) ;

if (timeout)
{
printf ("0 on checksum\n");
continue;

}

[* compare rec num and 1's comp */
if((/xl & 0x£f) != (r2 & Oxff))

printf("Bad recnun’s\n");
continue;

}

/* compare checksum and local one */
if(rchk != chksum)

{

printf("Bad checksum\n");

response = NAK;

continue;

}
if((rl =(rec-1) & 0zff)) /* dupe */

printf("Duplicate record\n");
response = ACK;
continue;

}

if(rl != (rec & O0xff))
{
printf("Record numbering error\n");
close(dfile);
return(0);

}
rectt;

/% write data to file */
for(i=0; i<RECSIZE; itt)

{
putc (buffer{i], dfile);
}

printf("0K\n") ;
response = ACK;
}
}
/* showerr() - display disk error */
showerr (fname, errmsg)
char *fname;
char *errmsg;
{
erase();
move(ll, 5);
printf("Error accessing %s", fname);
move(13, 5);
printf("[¥s]", errmsg);
move (20, 5);
}

/* getchtmo() - get char w/timeout */
getchtmo(timlen)

int timlen;

{

int serchar;

timeout = 0;
setclock((unsigned)0); /* start timer */

for(;;)

{

serchar = getserial();
if (serchar >= 0)

return(serchar);

}
if (getclock() >= timlen)
{

timeout = 1;
return 0;
}
}
}

[* fillbuf() - get buffer of data */
fillbuf (filnum, buf)
int filnum;
char buf[];
{
int i;
int echk;
char *status = 0x0090;

for(i=0; i<RECSIZE; it4)

/* get a char from file */

if ((echk=fgetc(filnum)) = ECF)
{
break;

}
buf{i] = echk;
}

if(i == 0) return 0;

/* set rest of buffer to CTRL-Z */
for(; i<RECSIZE; it+)

{
buf[i] = (char)26;
}
return(l);
}

/* txrec() - send rec, get response */
txrec (buf)
char buf[];
{
int i;
int ch;
unsigned chksum;

tries = RETRY;
for(;;)
/* send record */

printf("Record %3d ", rec);
putserial (SOH);
putserial (rec);
putserial (/rec);
chksum = 0;
for(i=0; i<RECSIZE; it+)
{
putserial (buf[i]);
chksum += buf{i];
chksum &= 0xff;

putserial (chksum) ;
/* get response */

ch = getchtmo (BTOUT) ;
if (timeout)

{

tries--;

if(tries > 0)
{
printf("Retrying...\n");
continue;

print£ ("Timeout\n");
return(0);

}

[* analyze response */
if (ch == CAN)

{
printf("Cancelled\n");
return(0);

}
else if(ch == ACK)

{
printf ("ACKed\n", rec);
break;

}
else

{
if(ch = NAK)

{
printf ("NAKed\n", rec);
}
else
{
printf("Strange response\n’);
}
tries--;
if(tries > 0)
{
continue;
}
printf("No more retries!\n");
return(0);
}
}
rectt;
return(l);

}

/* gobble() - gobble up stray chars ¥/
gobble()
{

unsigned gotone;
printf("\ngobbling\n") ;
sleep(2);

for(;;)

{

gotone = 0;

/* clear input queue */

while(getserial() >= 0)
{
gotone = 1;
}

if (gotone)

{
sleep(l);
}

else
{
return;
1
}
}

/* end of file */

'T|

Transactor

61

December 1989: Volume 9, Issue 2

