The Link

Between C and Assembly

David Godshall
Elkhart, Indiana

.. .How would you like to be able to access a machine language
routine the same way you would access a C function?

If you own “Power C” from Spinnaker, you own an excellent and
powerful implementation of the C language. If you don’t, but have
been thinking about buying a copy, the possibilities opened by this
article may be enough to push you over the edge. Even if you don’t
own and don’t plan to buy Power C, the techniques mentioned in
this article may apply to other compilers that compile in two
separate stages (from source into object, then from object into
executable) or even for other types of programs.

The Problem. . .

[was writing some graphics routines to be used from C programs. |
decided that, while Power C is probably the fastest compiler for the
C-64 (“A Comparison of Language Speeds”, Volume 7, Issue 5),
nothing can beat hand-coding a piece of code for speed. I promptly
set about coding assembly language routines to clear the bitmap,
plot points, and all the other nice things you like to do to graphics
screens quickly. In looking for a good way to use these routines from
my C programs, | came across the SYS function. I tried it. I gave up
on it. The main trouble with the SYS function is that it is little better
than the BASIC SYS command. It assumes the code is already in
memory (if it isn’t, a special disk access is needed to put it there). It
does not provide very descriptive access to the routines. The one
thing it has over BASIC's SYS command is that it can handle
parameters - three bytes’ worth. Some of the functions I wanted to
access, however, required more than 24 bits’ worth of information.

So, giving up on the SYS function, I looked around and about and
inside out for a better way. And I found it! My search led me to the
internals of the object files — those mysterious files that are the limbo
between pure source code and pure executable machine language. I
didn’t have a lot of hope. I've looked in real spaghetti files before
and was afraid the object files would turn out to be too complicated

for me to figure out without the aid of extensive documentation and

weeks of personal interviews with Power C author Brian Hilchie. My
fears were groundless.

Starting My Quest

To begin with, I already sort of knew what the linker does. It takes
an obiject file, moves it to a specific address in memory, and then
checks to see what the file needs to be linked with. It then gets those
files, puts them at unique addresses, and checks what files they
need. Finally, when all the files are linked in with everything they
need and the linker can’t find anything else to add, it writes the
executable file containing all the object files all linked up nicely. But
what is in an obiject file? How does it let the linker know what it
wants and what it has to offer? ‘

My first clue to the general format of the object files came from the
mysterious and totally undocumented (in my manual, at least) LIB.C
file. This is a nice utility that puts a list of all the global identifiers
from multiple object files into one file so that the linker can find their
functions and variables very easily. The first four files on the library
side of the disk (STDLIB.L, STDLIB2.L, SYSLIB.L and SYSLIB2.L)
can be examined and modified with this utility.

By looking at how LIB.C scans object files, I was able to determine
that object files are divided into four sections. I call them the Code
section, the Relocate section, the Global section, and the External
section. Each section begins with a word (two bytes in low/high
order) indicating how long the section is in bytes (for the Code
section) or entries (for the other sections). The general format is
summarized-in Table 1.

Section 1: The Code Section

The first section looks familiar when viewed through a machine
language monitor. It is straight machine language. Well, almost
straight. There are a few differences that will be straightened out by
the linker.

To begin with, there is some information that isn’t known at the
time the code is created. Any instruction referencing external
functions or variables is going to have to have its operand filled in by
the linker, so it doesn’t matter what value is in the operand.

Secondly, one of the jobs of the linker is to decide where in memory
to place the code. In order to enable the linker to do that easily, the
code is generated by the compiler as if it were assembled to location
$0000. In other words, if somewhere in the code you had a JMP -
instruction to transfer execution to the first instruction in the code
section, it would be a JMP $0000 instruction. The linker can then
relocate the code by calculating a new base address and adding it to
the offsets contained in the operands of any instructions referencing
a part of the code. But how does the linker know which instructions
need to be adjusted for the new address and which are already
pointing at the correct location (i.e. a ROM routine, a zero page
location, etc.)? This is where the second section comes in:

Section 2: The Relocate Section

This section points out to the linker which instructions need to be
adjusted during the address relocation process. If, for example, the
instruction JSR $0073 is flagged by this section and the linker
decided to relocate the code to base address $1153, then the
instruction will be changed to JSR $11c¢6. If the JSR were not
flagged by this section, if would remain JSR $0073.

The Transactor

March 1988: Volume 8, Issue O5

This section consists of a list of addresses (as offsets from $0000) of
instructions that need their operands relocated. The length word
indicates how many addresses (of two bytes each) are in this
section.

Section 3: The Global Section

This section tells the linker what the module has to offer to other
modules. Any functions or variables that may be used by external
routines are flagged in this section.

The length word indicates how many entries are in this section.
Each entry will contain a name or identifier, a byte flag, and an
address.

The name will be the one or more characters by which this variable
or routine can be accessed. Remember that C is case sensitive and
that identifiers coming out of the C compiler will be truncated to 8
characters. Terminate the name with a NULL (chr$(0)).

The byte flag tells the linker whether the entry is referring to a
location in the code section or an absolute location. If the byte is a
one, then the linker will know that it is referencing the code section
and will adjust the address when the code section is relocated. A
zero tells the linker that the address does not need to be relocated (it
may be pointing to a ROM routine or some other stable location).

Section 4 The External Section

This section is sort of the opposite of the global section. It tells the
linker what external routines and variables are needed by this
module. It contains entries similar to those in the global section.
Each entry consists of the name of the routine or variable to link in,
a word specifying how to link it in (offset), and the address of the
instruction accessing the external entity.

The word following the name allows several possibilities for linking
in the address of the external entity. First of all, it allows you to link
in the address of the entity, the address plus one, the address plus
two, etc. You can add up to 8191 bytes to the address. Secondly, you
can decide to either link in the whole address (for absolute instruc-
tions such as LDA xxxx) or just the high or low byte of the address
(for immediate instructions such as LDA #<xxxx or LDA #>xxxx).

The way to specify these options is to take the number of bytes you
want to add to the base address and multiply by four (to shift it into
the upper 14 bits). Then you add 0, 1, or 2 depending on whether
you want the whole address, the high byte, or the low byte
respectively. The resulting value would go in this offset word.

Finishing up

To finish up the object file, just terminate it with two NULLs. Now
you can give it the linker test! Beware, because the linker was
created to link together modules created by the C compiler. Since
the linker knows what type of object files the compiler is capable of
creating, it isn’t very error tolerant and will lock up on just about any
irregularity. If you say there are five global entries, make sure you
include exactly five. Make sure you terminate all identifiers with
NULLs and the file with two NULLSs. Et cetera.

Special Routines

There are several special external routines you may need to use
when writing code to be linked in to work under the C environment.
First is the c$start routine. This routine is included in every C
program and is responsible for setting up the C environment. It does
some setup work, calls the main() function, then does some clean-
up work before returning control to the shell or BASIC. Thus,
c$start must be the first thing to be called. The first instruction of
the first file to be linked in must call this routine. But how do you
know which of several files will be linked in first? To solve this, the C
compiler puts a JMP c$start instruction as the first instruction in
every module it generates. If there is a chance that your module
might be linked in first, you would also want to put in a jump to the
c$start external routine as the first instruction in your module.

Another important routine you will want to use is the c$funct_init
routine. This is a routine that would be called first thing in any
function you create. Normally, C functions call the routines ¢$105
on entry and ¢$106 just before returning instead of c$funct_init.
¢$105 copies the local variables (locations $2b-4a) and parameters
(cassette buffer $033c-$03fb) out of the way so the space can be
used for new variables and parameters; ¢$106 copies them in again
upon completion of the function. These require a lot of overhead, so
the c$funct_init routine comes in handy for small routines that
will not need to use the local variable area (they can use the
temporary locations $22-$2a and $4b-$60) and that will not call
other routines that will use the variable area or the parameter area.

Unfortunately, to explain ¢$105 and ¢$106 in more detail would
take us out of the scope of this article and into memory manage-
ment.

Parameter Passing

One of the advantages of linking machine language routines
through the object file as opposed to the SYS function is the ability to
pass dozens of parameters. On the originating end, the values of the
variables you are passing (or their addresses, if you are passing
pointers) are stored in memory starting at $033c and in the same
order as they were declared in the function descriptor. The accumu-
lator is then set to reflect the number of bytes used up by the
parameters, and the new function is called; it can then access the
parameters directly from this memory. As an example, the function
FRED (Age, Name, Weight, Height); where Age is a character
type, Name is a pointer to an array of characters, Weight is a
floating point number, and Height is an integer; would store:

$033c - Age (one byte)

$033d - Name (low byte of pointer)
$033e - Name (high byte of pointer)
$033f - Weight

$0340 - Weight

$0341 - Weight)(FP representation)
$0342 - Weight

$0343 - Weight

$0344 - Height (low byte)

$0345 - Height (high byte) '

The accumulator would be set to 10. The called routine would
naturally have to know what order the parameters are in and what
type of variable each parameter is. If the called function needs to
return a value, it should put it back into the cassette buffer at

The Transactor

March 1988: Volume 8, Issue O5

location $033c. Since the value is not written until just before
returning, you don’t have to worry about overwriting what is
already there.

An Example Is Worth Two Thousand Bytes

In order to clear up any questions you may still have, I will present a
practical example of creating an object file from an assembly
language file. While I used PAL as my assembler, you should be able
figure out how to get your assembler to do some of the unusual
things necessary to create an object file. Unfortunately, the current
version of SYMASS, the PAL-compatible assembler, will not be able
to assemble my example because it requires assembling to disk
(since the code is assembled to location $0000).

Listing 2 is a Doodle program written in C. It requires four external
routines, which it will get from Listing 1, the assembly language
portion. You will have to compile the C portion, assemble the
assembly language portion, and then link them together with the
linker. You will then have an executable program that will let you
draw on the hires screen with the [JKM diamond. The +, -, and /
keys set the drawing mode to on, off, and flip respectively. RUN/
STOP restores the normal text screen and exits the program. The
program doesn’t do any boundary checking — so don't try to draw
off the screen or you may destroy something vital!

Listing 1 provides four functions: Clear, Plot, FastKeys, and
SlowKeys. Clear fills any block of memory of any size with any
byte. Plot allows you to manipulate any pixel on the graphic screen.
FastKeys sets up an interrupt routine to speed up the keyboard
repeat, and SlowKeys turns it off again.

Line 5 in listing 1 opens the object file to which it will write the
object file. I am following a convention (which I suspect the author
of Power C followed) of suffixing object files created from C source
with a .0 and ‘object files created from Assembly source with .OBJ.

Lines 10 and 20 “fix” PAL so it writes the object file correctly for our
purposes. Normally a machine language file begins with the object
code origin address so that the kernal LOAD routine knows where
to place the routine when you load it. The linker does not require
that address and, in fact, gets confused by it. The pokes in line 20
replace the two JMP $FFD2 instructions that write the address to the
file with do-nothing BIT $FFD2 instructions. If you have another
assembler you will have to find a way to get around this problem.
You may have to write a little program to strip the first two bytes off
the object file after creating it.

Line 30 invokes PAL, and line 40 tells it to assemble to the file
opened in line 10. In line 50 I tell the assembler to start assembling
to location $0000 (minus two for the length word). I then define the
filler label xxxxxx in line 60. I use this label in references to
external entities since the assembler requires something. The linker
will fill in the correct address. Line 120 sets up the jump to the setup
routine in case this object file is the first one to be linked in.

Lines 100, 7010, 8020, and 9020 set up the length word for each of
the sections. In line 100 it is just a matter of putting the end of the
code section since the code starts at $0000. The length in line 7010
is calculated by taking the number of bytes defined in the relocate
section, dividing by two (since the length is expressed in words
instead of bytes), and subtracting one (to skip the length word).

Calculating the length in the global and external sections is a little
different. Here I use a label as if it were a variable, adding one for
each entry, using PAL’s left-arrow temporary assignment operator.
Since calculating labels happens in the first pass and the code is
written the second pass, it doesn’t matter that the lines that
increment the label (lines 8040, 8090, 8140, etc.) appear after the
line putting the word in the file (line 8020 or 9020).

The Clear routine is in lines 160-390 and the global entry at lines
8090-8120 open this routine to allow access by other functions.
Likewise, Plot in lines 500-1010 is opened by lines 8140-8170 as
are the FastKeys and SlowKeys routines by the entries at lines
8190-8220 and 8240-8270 respectively.

Notice the global entry at lines 8290-8320 and the two external
entries at lines 9280-9360 for the irq% % routine. Sometimes you
may need to access a local routine or variable in a more specialized
way than just by absolute addressing. Lines 1120 and 1140 need to
access the local routine irgkeys by immediate addressing. The
relocate section, however, only relocates absolute addressing in-
structions. In order to get it to work [had to treat the irgkeys
routine as an external routine. This shows that local routines can be
treated as external routines if necessary. Also, I chose to add two %
symbols to the name to ensure that it doesn’t interfere if you happen
to define another routine named irq somewhere else.

In line 970 I am storing a value back into location $033c. This is to
provide a return value so that the calling routine can check the new
state of the pixel after the Plot routine is called.

In Conclusion. . .

I would like to thank Brian Hilchie for a powerful compiler that has
raised the productivity value of the Commodore 64 by several
notches. Thanks also for an elegant and straightforward object
format. But why didn’t he include this information in the documen-
tation - to allow someone to make some money writing articles
about it? I would suggest to Brian that, given the nature of C,
machine language, and his specific implementation, it should not
have been hard for him to include a #ASM and #ENDM set of
compiler directives to allow inline assembly language. This would
have made an attractive compiler virtually irresistible. I would
recommend him adding it to a future update. After all, compared to
writing a compiler, adding a simple assembler should be peanuts.
He may be able to use PAL or SYMASS as a skeleton. If anyone could
give me Brian Hilchie’s address, I would like to be able to write to
him myself.

Those of you who want to take these ideas farther might want to
tackle writing an assembler that would assemble source into object
files of the type linkable by the C linker. You would probably need to
add some pseudo ops like .GLOB, .EXTN, and .FUNC.

If you want to discuss specifics for such an assembler, or have any
questions, problems, corrections or criticisms, 1 would love to hear
from you. [can be reached at the following address:

David Godshall
137 Wagner
Elkhart, IN 46516

Fido-Mail or Net-Mail can be sent to me at node 11/205 - <G>o-
shen <T>owne <C>rier.

The Transactor

March 1988: Volume 8, Issue 05

Table 1: Composition of Object Files

Length
Code
6502 Instructions
Length
Address
Relocate ; ’
Address
Length
Composition of Global Entries:
Global Entry
Name 0
Global ' Mode| «<—— 0 = Address is absolute
Global Entry Address 1 = Address is local
Length
Composition of External Entries:
External Entry
Name 0
Extemal | [_ofeet | — [IIIIID 0TI
External Entry Address Leftmost 14 bits 00- Absolute
. is Offsettoadd 01- High byte
to External 10- Low byte
0 0 Address x 4 11-Low byte
Listing 1: GRPLOT.PAL NN [165extn2 jsr xxxxxx
DJ | 170 Ida $033c ;<addr
HC | 5 open 2,8,2,"@0:grplot.obj,s,w" CB | 180rloct sta laddress
FM | 10 pal = peek(701) + 256+ peek(702) Cl | 190 sta $22
DB | 20 poke pal + 1759,44:poke pal + 1764,44 MK | 200 lda $033d ;>addr
PO | 30sys 700 JB | 210rloc2 sta l!address+1
JD | 40 .0opt 02 DK | 220 sta $23 :
OH | 50*=-2 JO | 230 lda $0340 ;byte
MF | 60 xxxxxx = 0 DH | 240 Idy #8$00
PM | 89; JE | 250 ldx $033f ;>length
Ol | 97 j—————— - GF | 260 beq floop2
CM | 98 ; code section DJ | 270floop1 sta ($22),y filla
AJ 99— CN | 280 dey ;page
MA | 100 .word creloc NF | 290 bne floop1
EO | 110; KM | 300 inc $23 ;fill many
FB | 120 cstart jmp xxxxxx CJ | 310 dex ;pages
IP | 130; LH | 320 bne floop1
KD | 131 ;*function: , FJ | 330 Idy #0
DO | 132 ;'Clear (Address,Length,Byte) JL | 340floop2 cpy $033e :<length
NH | 133 ;'unsigned int Address; FE | 350 beq fexit
KA | 134 ;'unsigned int Length; IF | 360 A sta ($22),y ;fill part
'DP | 135 ;°char Byte; ML | 370 iny ;of a page
EG | 136" JL | 380 bne floop2
FP | 137 ;"global: LM | 390 fexit rts
Cl | 138 ;" unsigned int Address; FA | 399;
BA | 139; NF | 400 grrows .word 0, 320, 640, 960,1280
FD | 140 address .word $e000 AM | 410 .word 1600,1920,2240,2560,2880
MA | 150; EL | 420 .word 3200,3520,3840,4160,4480
JM | 160 clear =% BN | 430 .word 4800,5120,5440,5760,6080
The Transactor 39 March 1988: Volume 8, Issue O5

AA | 440 .word 6400,6720,7040,7360,7680 PO | 1110 sei

HD | 449; IJ | 1120 extn4d Ida #<irgkeys
AP | 450 orbits .byte 128,64,32,16,8,4,2,1 FC | 1130 sta $0314

Ml | 460 andbits .byte 127,191,223,239 IK | 1140extn5 Ida #>irgkeys
FL | 470 .byte 247,251,253,254 KD | 1150 sta $0315

AG | 490; GB | 1160 cli

Al | 491 ; function: OH | 1170 rts

JL | 492;° char Plot (x,y) Jl [1299;

NE | 493;" unsignedintx,y; GB | 1300 irgkeys =+

EG | 494, FE | 1310 Ida #$01

FG | 495; KA | 1320 sta $028b

AH | 500 plot =»* FF | 1330 lda #$00

DD | 505extn3 jsr XXXXXX PB | 1340 sta $028c

MJ | 510 Ida $033e ;y coord PG | 1350 jmp $ea31

CC | 520 Isr a EO | 1390;

MC | 530 Isr a EA | 1391 function:

IE | 540 and #254 MG | 1392 ;" SlowKeys ()

FP | 550 tay HO | 1393;

LD | 560rloc3 Ida grrows,y ;getrow IG | 1400 slowkey ==

AG | 570 clc ;and add LB | 1410 sei

FI | 580rloc4 adc laddress ;bitmap HD | 1420 lda #<$ea31
PL | 590 sta $22 ;address BF | 1430 sta $0314

MP | 600rloc5 Ida grrows+1,y HE | 1440 Ida #>$ea31
ND | 610 rloc6 adc laddress+1 GG | 1450 sta $0315

DD | 620 sta $23 CE | 1460 cli

Ol | 630 Ida $033c ;x coord lo KK | 1470 rts

GK | 640 and #911111000 OD | 1480;

CA | 650 adc $22 AD | 6997 ;

IF | 660 sta $22 Cl | 6998 ; relocate section

BK | 670 Ida $033d ;x coord hi CD | 6999;

DC | 680 adc $23 PA | 7000 creloc ==

JH | 690 sta $23 ED | 7010 .word (cglobal-creloc)>1-1
KF | 700 Ida $033e ;y coord CO | 7020;

KO | 710 and #9%00000111 EE | 7030 .word rloc1

PJ | 720 tay AF | 7040 .word rloc2

MP | 740 Ida $033c ;x coord lo DO | 7050 .word rloc3 ;the addrs
CB | 750 and #9%00000111 BD | 7060 .word rloc4 ;of all
CM | 760 sta $24 DL | 7070 .word rloc5 ;instructions
LJ | 770 sei GG | 7080 .word rloc6 ;accessing
ID | 780 Ida $01 ;swap all FD | 7090 .word rloc7 ;local
HP | 790 pha ;rom/io out Il | 7100 .word rloc8 ;variables.
ME | 800 Ida #$30 EK | 7110 .word rloc9

HO | 810 sta $01 » OC | 7120 .word rloc10

LN | 820 Ida ($22),y ;check LD | 7130 .word rloc11

NL [830 extn1 ldx !xxxxxx ;plot type IE | 7140 .word rloc12

AJ | 840 beq bitoff ;and modify CL | 7996 ;

GJ | 850 cpx #1 ;pixel LG | 7997;

LO | 860 beq biton ' AO | 7998 ; global section

OE | 870 bitflip ldx $24 sinvert NG | 7999;

NL | 880 rloc7 eor lorbits,x LJ | 8000 cglobal =+

DB | 890rloc8 jmp pexit PP | 8010 numglob = 0

BA | 900 biton ldx $24 ;pixel on MF | 8020 .word numglob
EG | 910rloc9 ora lorbits,x EN | 8030; ’

AJ [920rloc10 jmp pexit JB | 8040 numglob _ numglob + 1

LJ | 930 bitoff Idx $24 ;pixel off FO | 8050 .asc "Address"..byt 0
LK | 940rloc11 and !andbits,x IL | 8060 byt 1

JI | 950 pexit sta ($22),y ;replace KG | 8070 .word address

Bl | 960rloc12 and !orbits,x ;byte and GA | 8080; :
ML | 970 sta $033c ;return LE | 8090 numglob _ numglob + 1

FP | 980 pla ;bit state. EL | 8100 .asc “Clear":.byt 0
DB | 990 sta $01 ;restore KO | 8110 byt 1

FD | 1000 cli ;iofroms. Al | 8120 .word clear

ON | 1010 rts ID | 8130;

IL | 1090; NH | 8140 numglob _ numglob + 1

IN | 1091 ; function: KG | 8150 .asc "Plot":.byt 0
AA | 1092;" FastKeys () MB | 8160 byt 1.

LL | 1093; DG | 8170 .word plot

OA | 1100 fastkey == KG | 8180;
The Transactor

March 1988: Volume 8, Issue O5

PK | 8190 numglob _ numglob + 1

highmem (0xCCOO0);

ED | 8200 .asc "FastKeys':.byt 0
OE | 8210 .byt1 Pointer = 0xDDOO;
JD | 8220 .word fastkey *Pointer = (Store1 = «Pointer) & 252;
MJ | 8230; Poiqter = 0xD011; [+ Turn.on Graphics */
BO | 8240 numglob _ numglob + 1 *Pqnter = (Store2 = *Pointer) | 32;
JI | 8250 .asc "SlowKeys":.byt 0 gomtgr = 0xD018;
Al | 8260 byt 1 Pomter = 038,
JJ | 8270 .word slowkey e
OM | 8280; Pointer = 0x028a; I+ Turn on key repeat */
DB | 8290 numglob _ numglob + 1 *Pointer = 128;
FJ | 8300 .asc "irg%%:":.byt 0 FastKeys ();
CL | 8310 .byt1
NN | 8320 .word irgkeys Clear (0xCCO00, 1000, 93); /+ Clear colour screen */
AA | 8330 Clear (0xE000, 8000, 0); I+ Clear bitmap */
"KJ | 8996 ; PlotType = 1;
AA | 8997 o
HM | 8998 ; external section Pl o XY
CA | 8999 oty
DP | 9000 L:extern . while (Key = waitkey()) ! = 3)
KO | 9010 numext = 0 switch (Key)
BG | 9020 .word numext {
ML | 9030; case ‘i’ :
BE | 9040 numext , _ numext + 1 case’l’ : Plot(X,—-Y); /+ Allow user to draw lines ~ */
BE | 9050 .asc ‘cstart”.byt 0 break; /+byusingthel, J, KM +/
JC | 9060 .word 0 case’‘m’: /» diamond. -, +,and/set */
NI | 9080 .word cstart case’M’: Plot(X,++Y); /* clear, set, or flip mode */
IP | 9090: 4 break; /= respectively. STOP exits =/
NH | 9100 numext _ numext-+1 case 'l : "
EL | 9110 .asc "PlotType*:.byt 0 case 1’ : EI;;(;—X.Y) '
FG | 9120 .word 0 case /K’ : '
LK | 9140 .word extn1 case ‘K’ : Plot(++X.Y);
ED | 9150; break;
JL | 9160 numext _ numext+1 case '~/ : PlotType = 0;
CO | 9170 .asc "c$functinit":.byt 0 Plot (X, Y);
BK | 9180 .word 0 break;
JO | 9200 .word extn2 case’+: Plotlype = 1;
AH | 9210; Plot (X, Y);
FP | 9220 numext _ numext+ 1 case’l! : glrgg_k; e =2,
OB | 9230 asc “c$functlinit*..byt 0 Pty
NN | 9240 .word 0, } o
HC | 9260 - .word extn3 }
MK | 9270;
BD | 9280 numext _ numext+1 SlowKeys ();
DH | 9290 .asc ‘irq%%":.byt 0
NB | 9300 .word 2 Pointer = 0xDDOO; -
LF | 9310 .word extn4 +Pointer = Store1; ‘
ON | 9320; Pou']ter = 0xD011; /+ Restore Text mode */
DG | 9330 numext _ numext+ 1 ;Zﬁ:?;frfoigéﬁ,
FK | 9340 .asc 'irq%%":.byt 0 +Pointer = Store3:
NE | 9350 .word 1 }
Pl | 9360 .word extn5
El | 9998; .
DB | 9999 .word 0 ;donel! #define GETIN OxFFE4
chara, x, y,
Listing 2: DOODLE.C *numkeys = 198;
I doodle.c /+ Waits for user to press a key */
by David Godshall int waitkey ()
*/
char PlotType; while (xnumkeys == 0)
main) sys (GETIN, &a, &x, &y);
return a;
char =Pointer, Key, Store1, Store2, Store3; }
unsigned int Loop, X, Y;
The Transactor P March 1988: Volume 8, Issue O5

