C and Assembly: Clarifying the Link

Not all static variables are created equal...

by Larry Gaynier

Larry Gaynier has more than 15 years of experience in soft-
ware design, functional specification and documentation in a
variety of mainframe environments. In this article, he builds
on the description of C object files given by David Godshall in
Volume 8, Issue 5 and gives explicit detail of how the “C Pow-
er/Power C” compiler handles static variables. Some of this
material was also discussed by Adrian Pepper in Volume 9, Is-
sue 1.

I want to clarify some items presented in a recent Transactor
article (The Link Between C and Assembly by David Godshall,
Transactor, Volume 8, Issue 5). In my remarks, I assume
“Power C” from Spinnaker is identical to “C Power” from
Pro-Line. I have the “C Power” compilers for the C64 and the
C128.

Section 5: the static section

The article described four sections that make up a C object
file. However, there is a fifth section for static variables. The
two NULLS, thought to terminate an object file, actually specify
the length of the static section. In the example given, the
length is zero, meaning there are no static variables.

An important characteristic of static variables is that they are
always initialized to a known value at program start-up. The
default initial value is zero unless an explicit value is included
in the declaration for a static variable.

The static section of a C Power object file only contains static
variables that rely on the default initialization to zero. Static

Consider the following example:

int fun()

{
char c;
static int iarray([5];
c =1;

}

larray is declared to be a static array of five integers. When
compiled using C64 C Power, the following object file is pro-
duced.

hex dump of file fun.o

0000 1d 00 4c 4c 4c 85 fb a9 111.
0008 01 a2 00 a0 00 20 20 20
0010 a2 01 a0 00 86 2b a9 01+..
0018 a2 00 a0 00 4c 4c 4c 00 111
0020 00 01 00 46 55 4e 00 01 fun.
0028 03 00 03 00 43 24 53 54cSst
0030 41 52 54 00 00 00 00 00 art.....
0038 43 24 31 30 35 00 00 00 c$105.
0040 Ob 00 43 24 31 30 36 00 c$106.
0048 00 00 1a 00 01 00 cd 29 M)
0050 49 41 52 52 41 59 00 05 iarray.H

0058 00

The sections in the object file can be easily identified based on
their location relative to the beginning of the file.

variables that are explicitly declared with initial values, are Section Location Length Contents
handled in a different manner by the compiler. Unfortunately, -------- —=———=—=-= —————— ———————
this leads to inconsistent behavior with C Power programs as code $0000 $1D
we shall see later. relocate $001F 0
global $0021 1 fun
Each entry in the static section consists of a null-terminated external $002A 3 c$start,c$105,
name string followed by a word giving the size in bytes. c$106
Transactor 64 December 1988: Volume 9, Issue 2

The static variable section begins at location $004C showing a
length of one. Next, comes the only static entry - iarray. Its
size is declared to be ten bytes. The first two bytes in the name
string are generated by the compiler. (I am not sure about their
significance. They appear to be random identifiers assigned by
the compiler).

As you can see, no data space has actually been allocated for
iarray. This happens at run-time similar to automatic
variables. During the linking process, the static variable entries
are collected into a contiguous data area to be located immedi-
ately above the program in memory. When linking is com-
plete, the executable program knows the starting address and
size of the static data area. At run-time, the program performs
a simple loop to zero each byte in the static data area, guaran-
teeing the static variables are initialized to zero.

Inconsistent behavior

If a static variable is explicitly declared with an initial value,
appropriate memory is allocated and initialized in the code
section after the JMP C$START but before the regular executable
code. It does not appear in the static section. As a result, ini-
tialization happens once when the program is loaded. If the
static variable changes value during execution, the new value
is remembered and becomes the initial value for the next exe-
cution of the program, unless the program is reloaded. Consid-
er the following example, which includes explicit initializa-
tion.

int funl ()

{
char c;
static int iarrayl[5]
c =1;

}

={1,2,3,4,5};

larray is declared to be a static array of five integers initial-
ized to 1,2,3,4,5. When compiled using C64 C Power, the fol-
lowing object file is produced:

hex dump of file funl.o

0000 27 00 4c 4c 4c 01 00 02 r.1l11
0008 00 03 00 04 00 05 00 85
0010 fb a9 01 a2 00 a0 00 20
0018 20 20 a2 01 a0 00 86 2b e ..t
0020 a9 01 a2 00 a0 00 4c 4c11
0028 4c 00 00 01 00 46 55 4e 1l....fun
0030 31 00 01 0d 00 03 00 43 1...... c
0038 24 53 54 41 52 54 00 00 S$start..
0040 00 00 00 43 24 31 30 35 ...c$105
0048 00 00 00 15 00 43 24 31 csl
0050 30 36 00 00 00 24 00 00 06...$5
0058 00

The sections in the object file can be easily identified based on
their location relative to the beginning of the file.

Section Location Length Contents

code $0000 $27

relocate $0029 0

global $002B 1 funl

external $0035 3 c$start,c$105,
c$106

static $0057 0

Two things worth noting in this example are: the code section
is larger and the static section is empty. This result occurred
because iarray was allocated and initialized by the compiler
beginning at location $0005.

My advice is to keep in mind the potential side effects when
you explicitly initialize static variables as part of their declara-
tion.

Parameter passing

I think the article contains an error in describing how parame-
ters are passed during a function call. A character variable was
claimed to be passed as one byte. Actually, a character variable
is first converted to an integer when passed. This conversion is
described in the book “The C Programming Language” by
Kernighan and Ritchie. You may see other literature about the
C language refer to the conversion as ‘widening’ or ‘promot-
ing.” Any actual arguments of type float are converted to dou-
ble before the function call; any of type char or short are con-
verted to int. The C Power compiler only widens character
variables because the data type sizes are limited: char is one
byte; short, int, long, unsigned and pointer are two bytes; float
and double are five bytes. Consider the following example:

callfred()
{
char age, *name;
float weight;
int height;
fred(age, name, weight,height) ;
}

This function calls the function FRED that was described in the
article. When compiled using C64 C Power, the following ob-
ject file is produced.

hex dump of file callfred.o

0000 48 00 4c 4c 4c 85 fb a9 h.1l1ll...
0008 05 a2 05 a0 00 20 20 20
0010 a9 00 20 20 20 a6 2b a0 .. .+
0018 00 8e 3c 03 8c 3d 03 a6 ..<..=..
0020 2c a4 2d 8e 3e 03 8c 3f ,-.>..7?
0028 03 a9 04 a2 00 a0 00 20
0030 20 20 a6 2e a4 2f 8e 45 ../ .e
0038 03 8c 46 03 a9 0b 20 6¢c ..f... .
0040 6¢c a9 05 a2 05 a0 00 4c 1

Transactor

December 1988: Volume 9, Issue 2

0048 4c 4c 00 00 O1 00 43 41 11....ca
0050 4c 4c 46 52 45 44 00 01 1llfred..
0058 03 00 06 00 43 24 53 54c$st
0060 41 52 54 00 00 00 00 00 art.....
0068 43 24 31 30 35 00 00 00 <c¢$105...
0070 Ob 00 43 24 31 31 30 32 ..c$l1l02
0078 00 00 00 10 00 43 24 31 csl
0080 31 33 38 00 00 00 24 00 138...-.
0088 46 52 45 44 00 00 00 3¢ fred...<
0090 00 43 24 31 30 36 00 00 .cS$106
0098 00 45 00 00 00 .e.

On disassembly, it will be seen that the following 6502 code is
produced:

Code Size: 72(D) / 48(X)

0 relocation entries

1 external definitions
callfred R 0003
6 external references.

*= $0000

4c 4c 4c / 1800 jmp c$start

As the example shows, the accumulator is loaded with eleven
just before the JSR to FRED. These eleven bytes of parameters
are passed to FRED in memory starting at $033c:

$033c - Age (two bytes, zero high byte)
$033e - Name (two bytes, pointer)

$0340 - Weight (five bytes, FP representation)
$0345 - Height (two bytes)

Once inside the function FRED, the upper byte of Age will be
loaded to zero page storage but it will never be used. Widening
of parameters has been generally recognized as an inefficiency
of the C language. The new ANSI C standard. when adopted,
will add function prototyping to the C language which will
make parameter widening unnecessary. I am curious to see if
the “C Power” compilers will be updated to match the ANSI C
standard.

Wrapup

Overall, the C Power 128 compiler exhibits identical behavior
as the C64 version except that parameters are passed in
memory starting at $0400 in bank 1 and different zero page lo-

cations are used during function execution.

I hope you find this information useful to better understand the

o C Power compilers and to avoid some pitfalls. T|
callfred '
85 fb 00 / 0003 sta $fb
55 b 00 /10005 stasth BIG BLUE READER 128/64
a2 05 00 / 0007 1dx #$05 COMMODORE <=> |[BM PC
a0 00 00 / 0009 ldy #$00 1 b
20 20 20 7 oo0n ot £530 File Transfer Utility
a9 00 00 / 000e 1da #$00 Big Blue Reader 128/64 is ideal for those who use IBM PC
20 20 20 / 0010 jsr ¢$1102 compatible MS-DOS computers at work and have the
a6 2b 00 / 0013 1dx $2b Commodore 128 or 64 at home.

X Big Blue Reader 128/64 is not an IBM PC emulator, but rather
a0 00 00 / 0015 ldy #$00 it is a quick and easy to use file transfer program designed to
8e 3c 03 / 0017 stx $033c transfer word processing, text and ASCII files between two
8c 3d 03 / 001la sty $033d entirely different disk formats; Commodore and IBM MS-

DOS. Both CI128 and C64 applications are on the same disk
aj 2c 00 / 001d ldx $2c and requires either the 1571 andlor 1581 disk drive. (Transfer
a4 2d 00 / 001f ldy s2d 160K-360K 5.25 inch & 720K 3.5 inch MS-DOS disk files.)
8e 3e 03 / 0021 stx $033e Big Blue Reader 128 supports: C128 CP/M files, 17xx RAM
8c 3f 03 / 0024 sty $033f exp, 40 and 80 column modes.
a9 04 00 / 0027 1da #$04 Big Blue Reader 64 Version 2 is 1571 and 1581 compatible and
a2 00 00 / 0029 1dx #500 is available separately for only $29.95!
a0 00 00 / 002b 1ldy #500 BIG BLUE READER 128/64 only $44.95
20 20 20 / 002d jsr c$1138 No croa card arders plegae. Foregn orders add 4
a6 2e 00 / 0030 1dx $2e BBR 128/64 available to current BBR users !orgsm plus your original disk.
ad 2f 00 / 0032 ldy $2f Free shipping and handling. CALL or WRITE for more information.
8e 45 03 / 0034 stx $0345 e :
8c 46 03 / 0037 sty $0346 To order Call or Write:
a9 0b 00 / 003a lda #50b SOGWAP Software
20 6c 6c / 003c jsr fred 115 Bellmont Rd
a9 05 00 / 003f 1da #3505 Ph (319)724- 3090
a2 05 00 / 0041 1dx #$05 (219) 724~
a0 00 00 / 0043 ldy #$00
4c 4c 4c / 0045 jmp c$106

Transactor 66 December 1988: Volume 9, Issue 2

