Two Assemblers For GEOS

A comparison of GeoCOPE and Geoprogrammer

by Francis G. Kostella
GeoCOPE is available for $20 (US) from:

Bill Sharp Computing
P.O. Box 7533
Waco, TX 76714

Geoprogrammer is available from:

Berkeley Softworks
2150 Shattuck Ave.
Berkeley, CA 94704

I'd like to present you with a brief overview of two assemblers
that run under GEOS, and then throw a short argument at you as
to why you should be writing programs for GEOS.

If you've written programs for GEOS with a non-GEOS assem-
bler, you are probably familiar with the time-consuming hassle
that the programmer must endure in order to convert his object
file into a runnable GEOS file. Besides the object file needing
to be manipulated in order to work with GEOS, one must con-
stantly exit GEOS to make modifications and wait while the as-
sembler creates the new file, usually without the speed that the
TurboDOS adds, then re-boot the GEOS system.

What the GEOS programmer needs is a system that operates
while in the GEOS environment and outputs GEOS-ready files.
There are presently two packages (that I know of!) that do this:
geoCOPE from Bill Sharp Computing and Geoprogrammer
from Berkeley Softworks.

Looking into GeoCOPE

GeoCOPE is the less complex of the two and was the first
GEOS-specific assembler released. The COPE system has two
main programs, Editor and copeAsM (the assembler).

The nicest part of the COPE system is the Editor. COPE uses its
own unique structure for its source files, and each page of a
source file can hold up to 8K of text. A feature that 1 found
very useful, was the Ediror’s ability to make the source files
either GEOS SEQ or VLIR, Thus, my system equates file would
be SEQ structure and would be .included in the main VLIR

source file. A VLIR file can have 127 records, and at 8K per
record, you can see that each of your source files can get very
large if needed.

A few other features of the Editor that | liked and found very
usetul were the ability to set a Bookmark, so that you could
return to the last line edited, and an Autosave feature that auto-
matically updated changes when selected. The biggest advan-
tage of the Editor is that it is fast! Unlike geoWrite, you can
quickly scroll up or down through a document, and since it
doesn’t support fonts or font styles you're not left waiting
while the system calculates 24-point bold outlines. The Ediror
also supports Text Scraps, has a Save & Replace function, and
allows you to save single pages of a VLIR source file as single
SEQ source files, and SEQ as pages of VLIR files. The COPE Ed-
itor also allows you access to Desk Accessories (the system
comes with one: HexCalc a hex/dec/bin calculator) and works
with an REU. The only thing missing from the Editor is the
ability to use tabs to offset the opcodes and comments from
the left margin.

One thing to be aware of when using COPE’s Editor, 1s that it
stores each line of the source file as a null-terminated string. If
you use the Text Scrap function to move text to or from
geoWrite, you'll run into a few problems. Pasting a Scrap into
a COPE file from a geoWrite document is simply taken care of
by entering CRs where the line ends should be. But geoWrire
will choke on COPE Scraps (the Text Manager has no trouble
with them, though). I've managed to get around this problem
by writing a simple filter program that strips out all the nulls
except the final one.

COPE supports 21 different pseudo-ops, from the typical
BYTE and .WORD to some GEOS-specific ones like .ICON for
defining header icons and .SEGMENT for mapping out any
VLIR modules. COPE also allows you to define macros with
the .MAC and .MND directives.

Labels can be up to 32 characters in length and are case sensi-
tive. COPE also allows you to use local branch labels - up to
32 outstanding (unresolved) local labels are permitted. All the
usual arithmetic and logical operators are supported (*, /, +, -,
AND, EOR, OR).

74

Transactor

—

The major advantage that the COPE system has is its simple
and direct approach. Within an hour of reading the manual, 1
had an application up and runming. The manual itself only
details the features of the Editor and copeAsM. The examples
are few, but cover all the specifics. If you've used MADS,
you'll adapt very quickly as the two are very similar.

The manual together with the sample files will have you writ-
ing VLIR applications in no time at all. By using the .SEGMENT
directive, you simply indicate the end of one VLIR module and
the start of another. The nice thing about this approach is that
labels in all the different modules are global and the need for
jump tables or duplicate label definitions is eliminated.

COPE files are easy to maintain and update. I've kept all my
COPE source in VLIR structure: the first page holds the header
block definition and an index to the entire file, the second page
holds my constants and equates, the third page holds all of my
macros, and the source code begins on page four. Writing even
the largest of applications, 1've never gone over 20 VLIR pages
of source.

Once you have your source code
together, you load the assembler

cation was just about four minutes! Now I've got to admit that
this was on an REU, but even without it, the assembly took
about six or seven minutes. (Besides, MADS didn’t support the
REU.)

If you're just getting your feet wet with GEOS, COPE is the per-
fect place to start. The system easily handles smaller programs
and 1s fairly fast and easy to maintain. But once your applica-
tions begin to grow in size, that 5,000 character symbol table
begins to fill up fairly quickly. Once you get to this point, you
should consider Geoprogrammer.

The first thing that strikes you when you open the
Geoprogrammer package is the 450-page manual. If you
have a number of GEOS programs, you are perhaps used to the
sometimes simplistic documentation that presents you with the
“*this 1s a disk, put the disk in the drive...” level of informa-
tion. | was very pleasantly surprised to open this manual and
read through it without ever having my intelligence insulted.
The first two dozen pages do contain the basic info for first
time GEOS users, and there is a chapter devoted to an overview
of the Geoprogrammer system, but the rest of the manual is

filled with loads of useful information.

Granted, the info is not all organized

and select the file. CopeAsm 1s a
two-pass assembler that will assem-
ble to disk and print any errors to
the screen. You may list the assem-
bly on its second pass and can turn

[fjfm.:'rf just getting your ﬁﬂ*er_wer
with GEOS, GeoCOPE is the
perfect place to start...

as well as it might be (**Now, where is
that part about bitwise exclusive-
or?!"") but generally you'll be able to
find what you need with a little persis-
tence. In addition, the appendices of

this listing on or off. CopeASM also
allows you to pause the listing if
needed. If the file assembles without any errors, you can exit
to DeskTop and run the file. If you do have errors, you'll have
to pause the assembler and scribble them down. This is the
weakest part of the system - an option to output to an error file
15 sorely needed. Furthermore, attempting to pause the screen
listing will sometimes scroll the errors off the screen, forcing
you to reassemble just to see the errors.

Presently, COPE can only handle up to 5000 characters in its
label table, so you'll have to keep those labels short and use
plenty of local labels if you are assembling a large application.
Another limit of copeasm is that it can only assemble 8K sec-
tions of code at a time. This isn’t as big a problem as it may
seem, though: you can simply divide the file up into VLIR
modules and load them in as part of your initialization routine.
My favorite approach here is to put all of my tables, graphics,
and fonts into one or more VLIR modules and load them in
right after drawing the intro screen.

Although I haven’t done any rigorous comparisons of assem-
bly times, I've got one good example: the original version of
CIRCE was assembled with the MADS assembler, then convert-
ed to GEOS format. The amount of time taken between loading
the MADS assembler and loading the assembled and converted
file from the DeskTop was slightly under 35 minutes. After
converting the source files to COPE format, the time between
loading the COPE assembler and loading the assembled appli-

the manual contain detailed listings of
all the system constants and variables,
along with a hardcopy listing of the macro and sample source
files included on disk.

The Geoprogrammer disk itself is a flippy that includes, be-
sides the sample files and system symbols and macros, the
three programs that make up the Geoprogrammer system:
GEOASSEMBLER, GEOLINKER and GEODEBUGGER. No, there is no
editor here. Unless you have a text editor that handles
geoWrite files [such as Q&D Edit, written by Kostella and
Buckley and available from RUN - Ed.], you'll have to edit
your source files with geoWrire! And Geoprogrammer is a
two-drive system; you can use it with one drive, but the
amount of disk swapping involved will quickly convince you
that that second drive is worth the money. Better yet, an REU
1s not only a fast second drive that makes using geoWrite
tolerable, but it will allow you to use GEODEBUGGER to its
fullest.

That being said, let me give a brief overview of the assembly
process. Once you've edited all of your source, you assemble
each of the source files into .rel relocatable object files. Then
you load a linker file (also a geoWrite document) into GE-
OLINKER to link together your .rel files into a runnable GEOS
file on disk. Now you can load GEODEBUGGER to test and de-
bug your program. Sounds simple, eh? Well, there’s a lot more
going on here than would appear. Geoprogrammer gives you
access to some powerful features and abilities that you may

Volume 9, Issue 5

find that you won’t want to do without once you've gotten
used to them.

First off, GEOASSEMBLER is a two-pass assembler that supports
a number of useful features: conditional assembly, macros, lo-
cal labels, the ability to parse complex algebraic expressions.
and the ability to pass symbols to the linker or debugger.
GEOASSEMBLER will also output an error file to disk (in

geoWrite format, of course!), if needed, for each file assem-
bled.

When GEOASSEMBLER starts assembling a file, it uses three
counters to keep track of the code: .zsect for zero page ram,
psect for program code, and .ramsect for uninitialized data. If
you're lazy like I am, when you need a new variable, you just
add 1t somewhere in the current section of code instead of
adding 1t to a separate section of code for variables. By using
the .psect and .ramsect directives, you can add variables just
about anywhere like this:

.ramsect
MyVariable:
.psect\b

.block 1

When the assembler encounters this construction, it will give
the label MyVariable the address of the current address of
Jamsect (which can be set by the .ramsect directive or in the
linker file). The .ramsect section defaults to the RAM follow-
ing the last byte of code, thus we don’t end up assembling
uninitialized variables and add to the length of the program.
Perhaps not a big deal, but when you have a few hundred
bytes of variables it becomes noticeable.

Another useful feature of the assembler is the 16-bit expres-
sion evaluator (GEOLINKER also uses the same evaluator). Be-
sides the usual arithmetic, the evaluator handles a number of
logical operators: the manual lists thirty of them. I usually
keep away from creating expressions too complex to be under-
stood at one glance, but GEOASSEMBLER will let you create
some truly bizarre and outlandish expressions if you so desire!
But the real power I find here is that you can easily create data
tables with a few easily changed constants at the root of some
complex expressions. Perhaps this doesn’t seem that unusual,
but I've been able to create expressions that all the other as-
semblers 1 own have choked on, and | don’t miss having to do
the math by hand.

You run GEOASSEMBLER from DeskTop and select the file to as-
semble from the typical 15-file dialog box. Once you've se-
lected the file to assemble, you are given a choice of drive for
the output file, then the file is assembled. The output file is the
same name as the source file but with a .rel appended. When
this 1s done, you can quit to DeskTop, assemble another file, or
open the error file (i.e. enter geoWrite) if one was generated. A
friend of mine who beta-tested the version 2.0 package tells
me that GEOASSEMBLER V2.0 will allow you to go directly to
the linker, and that it 1s not limited to selecting only the first
15 source files on disk.

Once you've assembled all the .re/ files in your program, it's
time to use GEOLINKER, GEOLINKER does more than just con-
nect separate object files together. First of all, GEOLINKER uses
a link file to determine the structure of the output program, be
It GEOS SEQ, VLIR, or CBM, which is a ‘regular’ object file. Sec-
ondly, the linker will add the header to the file. The linker will
also cross-resolve all label references between the different
rel files; if a label is defined in two different files, but is not
referenced in a third file GEOLINKER will not flag an error.

One thing I would like to mention here is that although the as-
sembler and linker accept symbol names up to 20 characters in
length, only the first eight are significant. This is not really a
problem, but you should remember that there are a few hun-
dred system symbols in the geosSym file usually .included dur-
ing assembly.

I once wrote a routine named DeleteRegion that was only
called from a routine in another source file. DeleteRegion nev-
er seemed to be called, but the disk would go active for a sec-
ond when it should have been called. The debugger only
shows the eight significant characters of the label when you
list the code, so I couldn’t imagine what was happening. But
the debugger also lets you view the label name by its hex ad-
dress, and upon examination, this label appeared somewhere
in the Kernal jump table. The routine that was being called
was the Kernal routine DeleteRecord! Luckily 1 didn’t have
any VLIR files open....

GEOLINKER will also allow you to output a separate symbol ta-
ble (again, a geoWrite file) to the drive of your choice. Like
GEOASSEMBLER, if there are any errors, you have the option of
directly opening the error file after linking. One thing to note
here is that when there are more than 99 errors, the system will
sometimes have a fatal crash.

When GEOLINKER creates the file on disk, it also writes a special
.dbg tile to disk for use by the debugger - more on this later.

The manual does not include specifications for either
GEOASSEMBLER or GEOLINKER, otherwise 1'd be happy to in-
clude a list here. If you do run into problems assembling and
linking very large files, you can always use the .noglbl and
-noeqin directives to cut down the number of symbols passed
to the linker. One way to quickly cut down on the number of
symbols 1s to use .noglbl and .noeqin before .include geoSym
(the system labels and equates) and .glbl and .eqin after. Of
course you don’t get anything for free, and these symbols
don’t get passed to the debugger!

A sneaky trick | use when doing this, to get the system sym-
bols to the debugger when writing a large VLIR application, is
to assemble the geosRoutines and geosMemoryMap and link
them into one of my modules that isn’t using very many sym-
bols. Each module has its own set of symbols and is selected
in the debugger by the setmod command. If you're debugging
a stretch of code that uses a lot of system calls, just reset the
module priority to the module with the system symbols.

76

Transactor

Alternately, I find that just defining the pseudo-registers as
global equates helps a great deal when debugging.

Another potential problem ['ve noticed that is not document-
ed, is that when linking files from two drives, the linker seems
to search for the file on the current drive first, then checks the
other drive. The problem here is that if you have two different
versions of one particular .rel file, let’s call it beta.rel, and this
file 1s supposed to be linked after a file called alpha.rel that is
not on the current disk, when the linker switches drives to find
alpha.rel, it does not switch back to the original drive, poten-
tially linking the wrong beta.rel. 1 don’t have any empirical
evidence fpr this, but if your modifications don’t seem to be
appearing in your new version of a program, try moving all of
the .rel files in one VLIR module to the same disk.

Once you've assembled a GEOS program, it's time to load
GEODEBUGGER - here’s where the fun begins! GEODEBUGGER is
a sort of ‘shell’ that uses NMIs to take control of the machine
and allows vou to debug the program (or examine the Kernal)
in an almost interactive environment. Load your program from
the debugger. Need to tweak some values or check why that
branch isn’t being taken? Just bang on the RESTORE key and
you're in the GEODEBUGGER again.
GEODEBUGGER 'is the best thing about

autoexec macro removes these from the symbol table, like
this:

Jnacro autoexec name
clrsym Passl|cr]; eliminate symbol
clrsym picWcr]
clrsym picH|cr]

.endm

There are dozens of other commands, but there are problems
with some of the memory commands, most notably FILL,
which doesn’t work at all. My beta-test friend tells me that this
bug has been eliminated in the 2.0 version. The only other
thing that one could desire would be a more detailed descrip-
tion of the macro primitives in the manual,

Overall, the Geoprogrammer package is nicely put together,
and along with an REU will dramatically increase your output
and capabilities. Most especially, the debugger will teach you
about programming for GEOS by allowing you to examine any
GEOS program and the GEOS Kernal in detail.

[f you're new to assembly language, | suggest that you give
writing GEOS programs a try. A com-
mon problem for beginners 15 the

this package; you can set breakpoints,
alter stack or register values, and
access the disk drives almost like a
sector editor.

Geoprogrammer along with an
REU will dramatically increase
your output and capabilities...

need to develop a set of routines to
perform common functions; i.e.,
printing text and graphics to the
screen, moving laree chunks of
memory around, disk access, and

There are actually two versions of
GEODEBUGGER. When you load the
program, it first checks for a REU. If there is one connected,
the full debugger is loaded into the REU, otherwise the mini-
debugger is loaded into RAM from $3E00 to $5FFF. Needless to
say, the REU super-debugger is the preferred option.

What makes the debugger truly useful is the ability for it to
use the .dbg files generated by the linker. These files contain a
list of symbols and their addresses. This way, while in the de-
bugger, you can list and modify a section of code using labels
from your source files. Of course, your changes are not saved,
but this allows you to try out different things without con-
stantly reassembling the program.

GEODEBUGGER 1s basically a machine language monitor with
plenty of features. One of the most powerful of these in the
super-debugger is the ability to define macros. Most of the
commands in the debugger are actually system macros com-
posed of a number of macro primitives. GEODEBUGGER allows
you to define up to 1,000 bytes of user macros. These user
macros can be made up of the macro primitives or system
macros. A macro file with the same name as your application
will be automatically loaded along with your application.
Optionally, you can define a default set of macros and an au-
toexec macro to run when the debugger is loaded. For
example, the linker always passes a few of the system
variables to the debugger, but I have no use for them, so my

string input to name just a few.

When you're just starting out, you
basically begin with nothing, and unul you've accumulated
enough experience to write code to perform some of the above
functions, your ability to write useful programs is hindered.
When you code for GEOS, all of these basic functions are always
available. You can concentrate on writing the *heart’ of the pro-
gram without getting bogged down in minor details. By getting
programs up and running quickly, the beginner will (hopefully)
form positive associations with assembly language, instead of
thinking of it as some arcane art which is painfully learned!

It you're interested in writing GEOS programs, you must get an
assembler package that runs in GEOS. If you're not sure how
far you want to go I suggest you get the geoCOPE assembler
from Bill Sharp Computing. The price is good and the system
direct and uncomplicated. If you later decide that you need
more power and you have a two-drive system (or REU!) and
can afford the price, go for Geoprogrammer. If you're an ex-
perienced programmer, | suggest that vou go straight to
Geoprogrammer or get them both.

Berkeley Softworks should be commended for releasing such
a nice package, especially considering the relatively small
market for products of this nature. Unfortunately, they don’t
seem as if they're going to release version 2.0 any time soon.
One only hopes that they would at least consider doing a mail-
in upgrade for present users. T

Volume 9, Issue 5

