
VANILLA
PIlOT

HH3 R . GUESS MY NU~lbER

11 0 T GUESS ~w NUI1BER FEHlEEt, e Af/D 99'
129 (C=€I

130 C l"O

140 '" F'
150 .-GUESS T WHAT I S lr'OUP (,UESS ,

16£1 A IfG
17£1

180

198

21.3 £1

.21£1

220

23£1

24£1
250

2t:O
2413 *EN!!

2Se

C A=G-R

C C=C+J

C. $=8

1'1 ' HB
J',' : *END

I" ' -

U," *SI1ALL

J'r' . *GUESS
Lifl H I C,

J .GUESS

T l'OU GOT IT!

T : IT ONL'T' TOOl

T I'l'~

Tamarack Software

, i

Tamarack Software

Copyright 1982 by Tamarack Software, Inc. No part of this
manual, except for brief passages in articles and reviews that
refer to author and publisher, may be reproduced without
written permission of the author.

WARRANTEE DISCLAIMER

The computer programs supplied with this manual are provided
to you, the user, with no warrantee of any kind. Although due
care has been taken to ensure the correct operation of this
program, no representation about their fitness for any partic­
ular use or about the accuracy of the results. Tamarack
Software, Inc., its distributors, retailers, or agents thus
assume no responsibility and accept no consequential, inci­
dental, or other liability arising from the use of these pro­
grams. Some states do not allow the exclusion or limitation or
implied warranties or liability for incidental or consequential
damages. So the above limitations may not apply to you.

HOW TO USE THIS MANUAL

The best way to learn how to program in VANILLA PILOT is to
actually sit down with a computer and do the things you are
reading about. Try the examples and write your own pro­
grams; then your knowledge will go beyond the theoretical to
the practical.

The first eight chapters of the manual are written as a tutorial.
Each of the various commands is highlighted in bold print.
Then there is an explanation of what the command does and
how to use it. Following the explanation are examples for you
to try. The examples are illustrated with both program listings
and video display screens, so you can see what should be
happening as you work.

At the end of each chapter is a quiz to test your understand­
ing of that chapter. There are questions testing your knowl­
edge of the terms and commands and a program for you to
write using the things you have learned. Review the chapter
until you are comfortable with your knowledg'e of the terms and
commands and of your ability to use them.

If you are already familiar with Pilot, Appendix A lists all the
commands with a short explanation of each command and its
format.

Remember HANDS ON FOR LEARNING will make you or your
students proficient programmers of VANILLA PILOT.

V ANI LLA PI LOT is a registered trademark of Tamarack
Software. Inc. COMMODORE-64. VIC-20. CBM. PET are all
trademarks of Commodore Business Machines. Inc.

ACKNOWLEDGEMENTS

The author would like to express his appreciation to the many
people who helped make this product better. There are too
many people to mention, but he would like to acknowledge the
assistance of a few.

First, the encouragement and support of several people from
Commodore Business Machines, Inc. who helped get this proj­
ect started. And to Kevin Kyle for bringing life to the manual
through his illustrations. Appreciation is also extended to Bill
Hicks and Sharon Bush for allowing access to their classrooms.
Their students gave us much insight into the approach to writ­
ing this manual. The thirty seven students in their classrooms
helped us to find some more obscure programming errors.

Finally, thanks to the author's family who assisted in proof
reading and bug catching. This includes his six year old
daughter who, on her way to learning Vanilla Pilot, found sev­
eral program errors everyone else overlooked.

TABLE OF CONTENTS
VANILLA PILOT

I. GETTING STARTED WITH PILOT
Clearing the Screen
What is a Computer Program
Entering your First Program
Some PILOT Editor Commands
The LIST Command
The NEW and UN NEW Commands
The AUTO Command
More PILOT Commands
The ACCEPT Command
The REMARK Command
The END Command
Quiz Yourself

II. DECISION MAKING PROGRAMS
The MATCH Command
Conditional Commands
The TYPE with Conditional Commands
More Editing Features
Deleting a Program Line
Deleting Program Sections
Inserting New Program Lines
Replacing a Program Line
The RENUMBER Command
Advance Renumbering
Quiz Yourself

III. BRANCHING
Statement L~bels
The JUMP Command
The JUMP with Conditional Commands
Program Loading and Saving
Using a Cassette
Saving a Program on Cassette
Loading a Program from Tape
Using a Diskette
Saving a Program to Disk
Loading a Program from Diskette
Appending a Program
Checking the Er:::-or Channel
Disk Directory
Quiz Yourself

1
4
5
6
7
7
8

10
11
11
13
14
14

15
16
18
18
22
22
23
23
24
25
28
29

31
32
32
34
35
35
35
36
36
37
38
38
39
39
39

IV. NUMBERS AND VARIABLES 41
The COMPUTE Command 43
The RANDOM NUMBER Command 45
Debugging a VANILLA PILOT Program 45
The TRACE Command 46
The OFF Command 47
The Deferred Mode TRACE 47
The DUMP Command 47
Stopping and Re-Starting a Program 48
Quiz Yourself 49

V. MODULAR PROGRAMMING 51
The USE Command 52
The END Command 53
The USE with Conditional Command 54
The LList and PLIST commands 55
'~uiz Yourself 57

VI. THE SCREEN AND SOUND COMMANDS 59
The SCREEN Command 60
The BEEP Command 66

Commodore- 64 Version 66
VIC:-:20 Version 68
The CBM and PET computers 69

Quiz Yourself 70

VII. TURTLE GRAPHICS 71
The GRAPHICS Command 72
Quiz Yourself 80

VIn. SOME ADVANCED CONCEPTS 81
The PAUSE Command 82
The NAME Field 82
TYPE Reserved Characters 83
The JUMP Commands 83
The WAIT Command 84
Final Editor Commands 85
The FIND Command 85
The CHANGE Command 85
Quiz Yourself 86

Appendix A. PILOT REFERENCE MANUAL 87
PILOT Editor Commands 87
PILOT Interpreter Statements 93

Appendix B. PREPARING A DISKETTE FOR USE 105

Appendix C. PILOT ERROR MESSAGES
Editor Error Messages
Interpreter Error Messages
Turtle Graphics Error Messages

Appendix D. CONTROLLING THE JOYSTICK ON
THE COMMODORE- 64
AND VIC-20

The JOYSTICK command
The FIRE BUTTON Command

107
107
108
109

111
111
112

I.

GETTING STARTED WITH PILOT

Chapter I
There are several different versions of TAMARACK
SOFTWARE'S PILOT. Follow the directions for your version
of Vanilla Pilot to get started.

DIRECTIONS FOR LOADING

CBM - 64 Diskette Version

Place diskette into disk drive.
Type: LOAD"LOADER*",8
When READY appears, type RUN
Press RETURN when directed.

CBM - 64 Cassette Version

Place cassette into recorder.
Type: LOAD"VANILLA PILOT", 1,1
Press the RETURN key.
When display returns, press CTRL key.
When ready appears, type: SYS32768
RETURN and you're ready to start.

VIC-20 Diskette Version
Insert 16k memory cartridge.
Place diskette into disk drive.
Type: LOAD"LOADER*", 8
When READY appears, type Run
Press RETURN when directed.

VIC- 20 Cassette Version
Insert 16K memory cartridge.
Place cassette into recorder.
Type: LOAD"VANILLA PILOT",l,l
Press the RETURN key.
When ready appears, type: SYS16384
RETURN and you're ready to start.

80ll and 4032 Diskette Versions
Place diskette into disk drive.
Press the SHIFT.and RUN STOP keys
together.
Press RETURN when directed.

8032 and 4032 Cassette Versions
Place cassette into recorder.
Type: LOAD"VANILLA PILOT"
Press the RETURN key.
vVhen ready appears type: SYS24576
RETURN and you're ready to start.

p. 2

After starting Vanilla Pilot, your screen should look like this:

Or with the VIC-20, it should look like this:

In the manual the .represents the cursor. The cursor is a
flashing square, whose job is to tell you where you are on the
screen. It should now be below the R in READY. The word
READY simply tells you that the computer is waiting for you to
type something on the screen.

Whenever you type anything on the keyboard, the cursor will
move one space to the right. Try it. Type: P I LOT. As you
type PILOT, the cursor will move to the right. The cursor will
now be just to the right of the T, waiting for further input, or
typing.

p. 3

Now press the key labeled ItJiiil;U • . The job of the 491111tJO
is to tell the computer to process the things you have typed.
The computer does not know anything about what you have
typed until the ';JI'u9~1 key is pressed. The computer will
display:

The computer responded with a ?SYNTAX ERROR because it
didn't understand your input. When you type something the
computer doesn't understand, it will display the words
?S YNT AX ERROR.

We will find out how to type some things the computer will
understand in a later section.

CLEARING THE SCREEN
Now let's clear the screen. Clearing the screen means to erase
everything on the screen. It is simple - hold down the ... ,:11"
key and the "":M#('M" key together.

Try it!

p.4

Your screen is now blank except for the cursor waiting in the
upper left corner. It is ready for your input.

Be sure to start each new function or activity by clearing the
screen. If your computer is a VIC-20 or Commodore-64, NEVER
use the ,9'iit19$ and 1;1I1~"'ltla keys to clear the screen.

WHAT IS A COMPUTER PROGRAM?
A computer program is a series of instruc­
tions or commands that tell the computer to
do a certain task or job. A program is made
up of statements. A statement is a command
or set of commands with a line number in
front of it.

Line numbers help the computer tell the difference between
immediate commands and program commands. A statement
without a line number is an immediate command. When you
press ItJ¥ilil;U', the computer will do that command right
then. A statement with a line number is a deferred or program
command. The computer will not do that command until you
type RUN. A computer program consists of a set of deferred
statements.

A line number may be any whole number between 0 and 63999.
Fractional line numbers are not allowed. If you use the same
line number more than once, some of the statements will be
lost.

Here is an example of a short program:

p.5

This program has a set of lines. Each line starts with a line
number and ends with a command. Line 100 contains a TYPE
statement and will tell the computer to put, or type, everything
following the colon (:) onto the screen. Lines 110, 120, and 130
are also TYPE statements. The E: in line 140 is an END
statement. This tells the computer the program is finished.

ENTERING YOUR FIRST PROGRAM
Type NEW.and press l;liIlI;U'.Now type the lines of the above
program on the computer. Type them exactly as they appear
above, using only unshifted characters for your commands.
Remember to press the 1:1111.;'1- key after each line.

OOPS!

Line 100 has a spelling error.

100 T :HELO THERE!

To correct errors you c,an either

A. Retype the whole line with the error.

B. Use the cursor control keys to correct the
mistake.

Using the cursor control keys is usually a lot easier than
retyping the whole line. Try it. Press the "":11" key along
with the key labeled C1141:1 and has arrows pointing up and
down. The cursor will move up one line. On some computers it
will keep moving up as long as you hold it down. Move the
cursor to line 100. If ~o up too far, then release both keys
and press the same ~ key again. This time do not press
the. ~1;"i. key. The cursor will move down.

Now that you have the cursor on the same line as the number
100 use the other (•• ".,., key to move the cursor to the right.
If you "'1:11,. with this key, the cursor will move left. Put
the cursor on the letter O.

Press the 1#1=11'1 and the key marked ."lI.i ...); .• . Wow! All of
the letters, 0 THERE! , will jump to the right one space! Type
the missing L and press the .;Jilll.U. key.

Now line 100 should look like this:

100 T: HELLO THERE!

p. 6

You have just WRITTEN and EDITED your first program in
V ANILLA PILOT! How do you get the computer to follow these
instructions? Press the 4.,;11.. and keys to
clear the screen. Then type RUN and press the RETURN key.

Go ahead! Try it! Watch your program go!

Here is what you should see:

SOME PILOT EDITOR COMMANDS
An EXECUTIVE command is one which tells your computer what
to do with your program. These commands do not have line
numbers. In fact, if you use them with line numbers the
computer might become confused and not know what to do with
them.

Till LI ST c.llmlnd
The LIST command displays or lists the
program statements currently in the com­
puter's memory on the screen.

To display our example program clear the
screen. Now type: LIST and press the
l;Ji"I;J~1 key. The program statements will
then be listed in order on the screen.

p. 7

Now you can check the program for mistakes, then change,
add, or delete lines as necessary. The various ways to erase,
replace, or insert lines will be talked about in a later chapter.

The LIST command tells the computer to list entire programs
or portions of programs, depending on what you' tell the
computer to do. Here are some examples:

LIST
LIST
LIST
LIST
LIST
LIST

100
130
-120
120-
110-130

display the entire program.
display line 100.
display line 130.
display lines 0 to 120.
display lines 120 to end of program.
display lines 110 to 130.

Try some of these examples on the sample program in memory.

When entering two numbers of lines to be listed, the first line
number must be smaller than the second line number. If it is
not, the computer will respond with a blank line. If you LIST a
line number that doesn't exist, the computer also responds
with a blank line.

The NEW and UNNEW commands
The NEW command erases the current program from the
computer's memory. Be VERY careful when using the NEW
command, it is easy to lose your program accidentally.

The UNNEW command will recover the program, if you
accidentally type NEW. It will work, only if you have not placed
any program lines in memory after the NEW command.

Try it.
p.8

Erase the program from memory. Type

NEW and press 13iu';nl.

Try to list the program example again.

You have erased the program from memory.

Now let's test the UNNEW command. Type

UNNEW and press l:Jiiii;U.

p. 9

It works!

Always erase an old program from the computer's memory with
the NEW command before entering a new program, otherwise,
you will end up with a mixture of both programs.

The AUTO command
The AUTO command automatical­
ly assigns line numbers to pro­
gram statements for you. As long
as you enter the statements in
proper order, this command re­
places the task of sequential line
numbering.

The AUTO command requires a number FOLLOWING it. This
number tells the computer the increment between line
numbers. Thus, AUT9 10 will tell the computer that the next
line number is to be 10 units higher than the last number. The
increment may be any number between 1 and 255.

Try this example. Enter the AUTO mode by typing: AUTO 10
and pressing the ,:li.II:1I_ key.

Now you are ready to enter another program. In this program
start with line number 100. Type: 100 T :ONE and press the
';jilil;nl key.

p. 10

The screen will look like this:

When you pressed the n'illl;ll- key, the computer responded
by typing the next line number and placing the cursor to the
right of it. The computer is now ready for you to type in the
next line of your program.

Once you've entered the entire program and wish to leave the
AUTO mode, press the l:Jilll;J~' key without entering
anything after the line number. Then type: AUTO and press
the .'Jilll,U' key. This will turn off the AUTO mode.

MORE PILOT COMMANDS

The ACCEPT command •• A:
The accept command will take input from the keyboard while
the program is executing or running. When the computer comes
to the ACCEPT command, it will stop and wait for you to enter
something on the keyboard.

The format for the ACCEPT command is A:.

Type in the example program below:

100 T: I AM A COMPUTER
110 T :MY NAME IS SEYMOUR
120 T :WHAT IS YOUR NAME?
130 A:
140 T:I LIKE YOUR NAME!
150 T : HAVE A NICE DAY!
160 E:

What happens when you run the program:

p.11

The computer is waiting for you to type in your name. The
question mark followed by an underline is the computer's
signal for you to answer a question. You may type your name
on the keyboard. If you make a mistake, use the 'f1141lHt
key to remove the error, correct it, and then type te res 0
your input.
When your answer is correct, press the mi.IJ;J@1 key.

Here is the rest of the program:

NOTE: Always precede the ACCEPT command with a TYPE
command to give the user a hint about what he ~hould input.

Another NOTE: Use a semicolon (;) at the end of a TYPE
statement to put the user input on the same line as the
question. Remember if you have a question mark at the end of
your question, remove it, as the ACCEPT command
automatically prints a question mark.

For example, change line 120 in the above programto:

120 T :WHAT IS YOUR NAME;

p.12

Don't forget to press l;ji.I,;U' after typing the ,. Now run
the program again

F.: UN

I At'l A c:or1F'UTER
t1'r1 HAt'lE IS SE'r't10UR.
~·JHAT IS YOUJ;: ~~AME?
.-, .. . -

Now, as you can see, the answer will be on the same line as the
question.

The REMARK command·· R:
The REMARK command will allow you to add titles or
comments to your program to make it easier for you or others to
understand. These notes can give more detail about what you
are doing. The computer ignores REMARK Commands, so you
can insert them anywhere in your program.

The format for the remark command is

R:comments

If we insert some remark statements in the last program, we
can see how they can be useful.

90 R: * * * THE NAME PROGRAM * * *
100 T: I AM A COMPUTER
110 T :MY NAME IS SEYMOUR
115 R:ASK FOR THE USER'S NAME
120 T:WHAT IS YOUR NAME?
130 A:
140 T:I LIKE YOUR NAME!
150 T: HAVE A NICE DAY!
160 E:

p. 13

The END command •. E:
The END command is not necessarily the last line of the
program. PILOT programs can be terminated, or ended, at any
time with the END command. However, unless you use the end
statement elsewhere, the last line must contain the END
command.

Ouiz Yourself
I. Match the command to its function.

A. LIST

B. NEW

C. AUTO

D. UNNEW

- Erases current program
from computer's memory.

- Assigns line numbers to program
statements.

- Recovers the program.

- Displays on the screen the
program statements currently in
the computer's memory.

II. Write a program using the TYPE, ACCEPT, REMARK,
and END Commands.

p.14

II

DECISION-MAKING PROGRAMS

p. 15

Chapter II
Vanilla Pilot programs can make decisions based on information
input from the keyboard. The computer makes its decisions
much the same way you do.

Making a decision involves accumulating data pertaining to the
decision and then acting on that data. For example, you want
to go to the park tomorrow for a picnic with your friends. You
need to make plans today.

CAN WE HAVE A PI CNI C TOMORROW?

If it is -

Then -

Check the weather forecast.

Sunny
Beautiful
Warm
Clear
Nice

Have a nice
Picnic.

Cloudy
Rainy
Cool
Hazy
Yucky

Stay home.

There is an advantage to using pilot for
writing decision -making programs. This
advantage is that pilot was designed to be
used when writing this sort of program.
The program allows you to perform com­
plex pattern -matching searches on the
user input. Then you can make decisions
based on the result of the match. This
section shows you how to write pilot pro­
grams that can be useful or just plain
FUN using pattern -matching.

The MATCH command .. M:
The MATCH command contains a list of
patterns to be searched for and matched
with user input information. Each pattern
is called a STRING. A string is computer -
talk for a set of letters, numbers, or
symbols. For example,

p. 16

Have a nice day!
Sally
#$%&'o@t:sx
December 25

is a string.
is a string.
is a string.
is a string.

The format for a match command is

M : string ,string, . . ., string

There can be several strings in a MATCH command. If you
have more than one, each must be separated by a comma.

M:HELP
M:HARD TEST,EASY QUIZ
M:13,14,15,16,17
M: CHAIR ,TABLE ,DESK
M:

NOTE: A MATCH command with no strings will match
ANYTHING.

The MATCH command gets its information from the ACCEPT
command. The ACCEPT command has a special function which
retains anything you type on the keyboard. That information
will be saved until the next ACCEPT command is used.

Anytime an ACCEPT is executed, the input is transferred to
the answer field. The answer field is the area in the computer's
memory where the user's responses are stored.

This form of the ACCEPT command is

A:$

If you forget to put in the $ sign, the computer will appear to
accept the user input, but the information will not be saved in
the answer field.

The MATCH command works by using what is called a 'sliding
window' match. That is, each string in the MATCH command is
scanned across the results of the last ACCEPT command, which
is stored in the answer field, to see if there is a match.

M:AIR will match: HOT AIR BALLOON
SPIRAL STAIRS
AIRPLANE
HAIRPIECE

p. 17

However, M: AIR will NOT match SPIRAL STAIRS or
HAIRPIECE. The space before the A of AIR will match with only
the LEADING or beginning portions of a word.

CONDITIONAL COMMANDS
The MATCH command will search the answer field, which
contains the results of the last ACCEPT command, for a
matching string. The computer remembers whether or not it
finds a match, then Vanilla Pilot can use this information to
perform a CONDITIONAL command. A conditional command is
one where you perform specific instructions based on the
result of the last MATCH command. The result of the last match
is stored in a location of the computer's memory called the Yes I
No Flag.

Here are some examples of conditional commands:

TY: TYPE if YES
TN: TYPE if NO
AY: A~CEPTifYES
AN: ACCEPT if NO

YES INO conditionals can be used with all the various
commands.

The TYPE with conditional commands .. TY:, TN:
Your Pilot program can contain a TYPE statement used with a
conditional command. This can be in the following formats:

TY:message
TN:message

When using the TY: command, if the last MATCH command
found a match, then the TY command will be executed. If no
match was found and there is a command with a N conditional,
then it will be executed. Both the Y and N conditionals may be
used following a single MATCH command, as long as they are
not both in the same statement. If you use both, then 0 N L Y
one of the commands will be executed. The other, because its
conditional does not match, will NOT be executed.

Here is a sample program:

100 R:GEOGRAPHY QUIZ
110 T :WHICH IS NOT A COUNTRY IN

p.18

120 T :NORTH AMERICA?
130 T:
140 T:CANADA MEXICO ENGLAND
150 T:
160 A: $
170 M :ENGLAND
180 T:
190 TY: THAT'S RIGHT! ! !
200 TN:NO, ENGLAND IS IN EUROPE.

If the correct answer, ENGLAND, is entered when you RUN
the program, the TY: command will be executed.

If an incorrect answer is entered, the program will execute the
TN: command to display:

Now try another case. Type NEW and press the 1:I •• lIgn.
key.

p. 19

100 R:WEATHER FORECAST
110 T :THE WEATHER FORECAST FOR TODAY
120 T: HAS A 100% PROBABILITY OF
130 T : PRECIPITATION •
140 T:
150 T:WHAT WILL WE SEE:
160 T :BLUE SKY CLOUDS RAIN SUNSHINE
170 A: $
180 T:
190 M :CLOUDS
200 TY:YES!! IT WILL BE CLOUDY.
210 M:RAIN
220 TY :RIGHT, PRECIPITATION MEANS RAIN.
230 M:CLOUDS,RAIN
240 TN:ARE YOU SURE ABOUT THAT?

Following are several RUNs of the program:

RUN

THE WEATHEr;: FORECAST FOR TODAY
HAS A lel3:'-~ PROBABI UT'r' OF
PRECIPITATION

14HAT IHLL 14E SEE·
BLUE SK'T'CLOUIIS RA HI SUHSH I HE
-"?CLOLIDS

'r'ES ! ! IT !oJ I LL BE CLOUDY.

READY •

•

RUN

THE WEATHER FORECAST FOR TODAY
HAS A H~I3:'~ PROBABILITY OF
PRECIPITATIOII.

WHAT 14ILL WE SEE
BLUE SK'r'CLOUDS RAIN Sl..IHSHIHE
"'SUNSHINE

ARE YOU SURE ABOUT THAT?

R£ADY •

p.20

"'UN

THE !4EATHER FORECAST FOR TODAY
HAS A 1I30;~ PROBAB III TY OF
PRECIPITATION.

WHAT WILL 14E SEE:
BLUE SKY CLOUDS RAIN SUNSHINE
'''RAIN

RIGHT,. PRECIPITATION MEANS RAIN.

READY •

•

Notice that there are three different outputs, or computer
responses, to what you typed in. The output depends on the
input string.

What happens if you enter CLOUDS AND RAIN? Try it. Did
your screen display:

RUN

THE WEATHER FORECAST FOR TODAY
HAS A 100% PROFABILIT'" OF
F'RECIPI TATION.

WHAT I~ILL WE SEE'
BLIJE SK'! CLOUDS RAni SUNSHINE
c.·CLOUI'S A~m RAW

'T'ES!' IT WILL BE CLOUDY.
RIGHT, PRECIPITATION MEANS RAIN.

'READY • •
CLOUDS AND RAIN produces a match in both MATCH
statements. So both TY: commands are executed.

Remember at the beginning of this chapter we were deciding
whether to plan a picnic for tomorrow. You now have the tools
to write a program to decide if you should go. Type: NEW and
press the I,Ji.u:U, key. Enter the following program:

100 T :WHAT IS THE WEATHER FORECAST?
110 A: $

What is the rest of the program? Try it! Your program should
act like this:

p.21

MORE EDITING FEATURES
The Vanilla Pilot editor contains a number of features which
make program entry and development easy.

Deleting a program line
When you wish to remove a program
line from a Pilot program, it is very
simple. You only need to type the line
number of the line you wish to delete
and press the I;J:ail.;U' key.

For example, enter the following program

100 T: TWINKLE, ;
110 T: TWINKLE;
120 T: LITTLE;
130 T: STAR

When you RUN this program, it should look like this

p.22

TWINKLE, TWINKLE LITTLE STAR

Now type: 120 and press .;11111;0,. Then type: LIST and
press .;JIIII;U'.

120
LIST

100 T:TWINKLE,;
110 T: TWINKLE;
130 T: STAR

Line 120 is now permanently missing from the program. There
is no way to recover it.

Deleting program sections
When you wish to remove an entire program section from a Pilot
program, then use the DELETE command. The DELETE
command has several formats

DELETE 100- 200
DELETE -120
DELETE 500-
DELETE 150

Delete all lines 100 to 200.
Delete all lines 0 to 120.
Delete all lines 500 to end.
Delete only line 150.

Be very careful with both ways of deleting program lines. In
either case, the lines you delete are PERMANENTLY gone from
your program. There is no way to recover them.

I nserting new program lines
Adding a new program line to your program is quite simple.
Whenever you type a program line, the computer will
automatically enter it into the program at the correct position.

Let's try it! Remember our program

LIST

100 T: TWINKLE, ;
110 T: TWINKLE;
130 T: STAR

Insert a new line

125 T: LITTLE;

p. 23

List the program.

LIST

100 T: TWINKLE, ;
110 T: TWINKLE;
125 T: LITTLE;
130 T: STAR

Now we see that the new line, number 125, is in proper
numerical sequence in the program. If we run this program, we
see

TWINKLE, TWINKLE LITTLE STAR

Replacing a program line
Suppose you wish to delete a program line and insert another
in its place. Try this by replacing line

125 T: LITT;LE;

with

125 T: SMALL;

This can be done in two ways.

One, you can delete line 125 by typing 125 and pressing the
l:Jili';U. key. Next, type the new line and press ';jilu;U'.
Then list the program:

125
125 T: SMALL;
LIST

100 T: TWINKLE, ;
110 T: TWINKLE;
125 T: SMALL;
130 T: STAR

You have replaced the old line 125 with the new line 125.

The second method is to type the new line 125 without first
deleting the old line 125. The computer will then automatically
replace the old line 125 with the new line 125. The old line is
deleted because the computer doesn't allow duplicate line
numbers.

p.24

Clear the screen and change line 125 back to the original

125 T: LITTLE;
LIST

100 T: TWINKLE, ;
110 T: TWINKLE;
125 T: LITTLE;
130 T: STAR

The RENUMBER command
Sometimes you might wish to
insert a statement between
two statements with consecu­
ti ve line n urn bers.. Vatlilla
Pilot has a RENUMBER com­
mand that will assign new
line numbers to the program
statements, thus giving you
space to enter the new state­
ment.

Type: NEW and press the
.;li.II;U' key. Enter the fol­
lowing short program:

100 T :HELLO!
101 T: GOOD BYE!
102 E:

63
&Lt

When you R UN this program, you will see:

p. 25

Now you decide to enter a new line, so the program would
display this:

How would you enter the change? You could delete 101 and 102,
then type in a new 101 and retype the old 101 and 102 as 102
and 103.

PHEW!

That is too much work! You could also use the RENUMBER
command. The format for a simple RENUMBER command is:
RENUMBER.

By itself, the RENUMBER command changes all of the line
numbers in the program starting the new line numbers with
line number 100 and counting by tens for as many lines as are
in the program. This will create enough space to insert extra
lines.

Type: RENUMBER and press the .:J'II'tU. key. Now LIST the
program.

p.26

You now have room to insert the extra line. Type: 105
T:WHAT A NICE DAY! and press the '3.llAdi' key. LIST the
program again.

Advanced renumbering
You can use the RENUMBER command to choose a starting line
number and to work with increments other than 10. The format
for this is

RENUMBER starting line number, new start, increment

The starting line number is the line where you wish to begin
renumbering. The new start is the line number where you wish
the renumbered portion to begin. The increment is the space
between the lines.

The RENUMBER by itself is equivalent to typing RENUMBER
0,100,10

Acceptable formats for the RENUMBER command are:

COMMAND

RENUMBER
RENUMBER 200
RENUMBER 200,500
RENUMBER 200,500,5

START #

o
200
200
200

NEW # INCREMENT

100
200
500
500

10
10
10

5

Remember that anytime you wish to specify any of the
parameters, you must specify all those that would appear
before that one.

Be careful! If you specify an increment that would take the
highest line number above 63999, strange things can happen to
your program line numbers. p. 27

Quiz Yourself

I. Fill in the blanks from the following list of words: MATCH,
string, ACCEPT, conditional, DELETE, RENUMBER

1. A is used to tie
up a package and is also the name of the set of
letters, numbers, and symbols to be searched for in
a MATCH command.

2. When using the MATCH command, use the
command to transfer infor­

-m-a-=-tl..-· o-n---:f r-o-m-t~h,-e-u-s-e-r.....,t,...o-t he answer field.

3. You have written a program, and you need to
add a new line between two consecutively numbered
lines. Use the
command to assign new line numbers to the program
statements.

4. Decision making is easy with yes/no
commands. ----------------------

II. Did you write a program to decide whether or not to go on
a picnic? If you didn't, write it now.

p.28

Clear the screen and change line 125 back to the original

125 T: LITTLE;
LIST

100 T: TWINKLE, ;
110 T: TWINKLE;
125 T: LITTLE;
130 T: STAR

The RENUMBER command
Sometimes you might wish to
insert a statement between
two statements with consecu­
ti ve line n urn bers.. Vanilla
Pilot has a RENUMBER com­
mand that will assign new
line numbers to the progra,m
statements, thus giving you
space to enter the new state­
ment.

Type: NEW and press the
4tJjlll;l@1 key. Enter the fol­
lowing short program:

100 T:HELLO!
101 T:GOOD BYE!
102 E:

IDO~
liD
I2D
I

63
6Li

When you RUN this program, you will see:

p.25

Now you decide to enter a new line, so the program would
display this:

How would you enter the change? You could delete 101 and 102,
then type in a new 101 and retype the old 101 and 102 as 102
and 103.

PHEW!

That is too much work! You could also use the RENUMBER
command. The format for a simple RENUMBER command is:
RENUMBER.

By itself, the RENUMBER command changes all of the line
numbers in the program starting the new line numbers with
line number 100 and counting by tens for as many lines as are
in the program. This will create enough space to insert extra
lines.

Type: RENUMBER and press the 1;J:aPI;J~1 key. Now LIST the
program.

p.26

You now have room to insert the extra line. Type: 105
T :WHAT A NICE DAY! and press the 1311IJ;lI key. LIST the
program again.

Advanced renumbering
You can use the RENUMBER command to choose a starting line
number and to work with increments other than 10. The format
for this is

RENUMBER starting line number, new start, increment

The starting line number is the line where you wish to begin
renumbering. The new start is the line number where you wish
the renumbered portion to begin. The increment is the space
between the lines.

The RENUMBER by itself is equivalent to typing RENUMBER
0,100,10

Acceptable formats for the RENUMBER command are:

COMMAND START # NEW # INCREMENT

RENUMBER 0 100 10
RENUMBER 200 200 200 10
RENUMBER 200,500 200 500 10
RENUMBER 200,500,5 200 500 5

Remember that anytime you wish to specify any of the
parameters, you must specify all those that would appear
before that one.

Be careful! If you specify an increment that would take the
highest line number above 63999, strange things can happen to
your program line numbers. p. 27

Quiz Yourself

I. Fill in the blanks from the following list of words: MATCH,
string, ACCEPT, conditional, DELETE, RENUMBER

1. A is used to tie
up a package and is also the name of the set of
letters, numbers, and symbols to be searched for in
a MATCH command.

2. When using the MATCH command, use the
command to transfer infor­

-m-a-:-hT"'· o-n--:f'-r-o-m-"-:":th=-e-u-s-e-r-t=-o-t he answer field.

3. You have written a program, and you need to
add a new line between two consecutively numbered
lines. Use the
command to assign new line numbers to the program
statements.

4. Decision making is easy with yes/no
commands. ----------------------

II. Did you write a program to decide whether ot' not to go on
a picnic? If you didn't, write it now.

p.28

p.29

p. 30

III

BRANCHING

p.31

All of the programs that you have been writing have executed
in line number order. That is, a program line with a lower line
number was executed before those with higher line numbers.
This is called sequential program execution. In this chapter
we will learn about the techniques for altering the flow of the
program. Vanilla Pilot allows you to use something called a
label. A label allows you to change the normal sequence of
program execution.

Statement Labels
A statement label is a way of NAMING a Pilot statement line. It
is different from a line number. Line numbers help to locate
lines in relation to one another. Line numbers are used only
when you are entering and editing a program. A label tells the
computer "this line is special". Whenever you tell the computer
to find a label, it will search for the label and transfer control
to the line with the correct label.

A statement with a label has the format:

Line number *label name Pilot command

The label name must start with an asterisk followed by any
combination of letters, numbers, or symbols. A space within
the label is not allowed.

Some correct labels are:

100 *ST ART T: HELLO THERE
130 *AGAIN A:
200 *TEST1.5 M:TYPE

Some incorrect labels are:

150 *START HERE T : HELLO
(space in label)

220 LABELl A:
(no asterisk in front)

The JUMP command .. J:
The JUMP command tells the com­
puter to break the usual sequential
program execution and jump to a
labeled statement.

The format for a JUMP command is:

p. 32

J : label name

Some examples are:

120 J: *START
190 J: *AGAIN
200 J: *TEST 1. 5

Make sure that each JUMP command has a label to jump to. If
you jump to a non -existent label, the program will stop and
display the label name and say
LABEL NOT FOUND.

If two or more statements have the same statement label, the
JUMP command will jump to the line with the' LOWER line
number. Make sure that you do not have duplicate labels.
Vanilla Pilot will search for the first few characters of a state­
ment label. If an apparent match appears before the label you
are actually looking for, the jump will be to the first label.

For example

200 *TEST 1. 5

300 J: *TEST

500 *TEST

If you used this JUMP command,

J:TEST

control would be transferred to the *TEST 1. 5 label even if you
were actually searching for *TEST. The match is for ONLY the
number of characters in the label following the JUMP
statement. Be careful about the labels you use in the JUMP
statement. You do not need to specify all of the characters in
the destination label, but you do need to have enough of the
label to find the correct label.

Try the following program

100 R: *** STATE PROGRAM ***
110 T: HERE IS A PROGRAM TO TEST

p. 33

120 T :HOW MANY STATES YOU KNOW.
130 T:
140 *GUESS T:NAME A STATE;
150 A:
160 T:
170 J:GUESS
180 E:

When you RUN this program, it will continue forever asking
you to name another state. There is no way for the program to
reach the E: in line 180. You can stop the execution of a pro-

RUN /STOP gram at any time by pressing the key.

The JUMP with conditional commands .. JY:, IN:

The JUMP command, following the MATCH command, can use
the Yes/No conditionals to help in the decision making process.
The MATCH command can instruct the JUMP command to go to
the appropriate section of the program. The use of the Yes /NO
conditionals with the JUMP statement is the same as with the
TY: and TN: commands.

Now let's demonstrate this by modifying the program asking
for the names of the states.

100 R*** STATE PROGRAM ***
110 T: HERE IS A PROGRAM TO TEST
120 T :HOW MANY STATES YOU KNOW.
130 T:
140 *GUESS T: NAME A STATE ;
150 A:
160 T:
163 T:WANT TO GUESS ANOTHER;
165 A: $
167 M: Y, YES ,YEP, OK ,FINE
170 JY:GUESS
180 E:

As you can see, we have added three lines 163-167. Type:
R UN and press t3ilil.U'

p. 34

PUN
HERE IS A PROGRAM TO TEST
HO~J MAN.,.' STATES .,.'OU Kt~O!~.

~IAME A STATE ?CALIFORNIA

WANT TO GUESS ANOTHER?.,.'ES

NAME A STATE ?t10NTA~IA

WANT TO GUESS A~IOTHER?NOPE

READY •

•

Program loading and saving

Using a Cassette

The Commodore (tm) Datasette will store Vanilla Pilot programs
on a cassette tape and load them from that tape at a later time.
Usually, you will store only one program per side of a tape,
though more can be saved on each side, if you wish.

Saving a program on tape
Make sure that you have properly connected the recorder to
the computer. If you are not sure about this, consult your
computer manual. Now open the recorder lid by pressing the
STOP IEJECT key. Insert a cassette tape. I f this is the first

program on the cassette, be sure that the tape has been
advanced past the leader. Make a note of the tape counter
setting.

To save the program onto the tape, type

CSAVE "filename"

The "filename" is the name you have given to the program.
When you press the l:Jiil,;U. key, the computer will ask that

p.35

the tA!$' and j;JB')ilt' keys be pressed simultaneously.
The recorder will run for a short while, then the word READY.
will appear on the screen. The program has now been saved. If
you are planning to use the tape for additional programs, make
a note of the tape counter so you know where to start the next
program.

You can protect the tape from having another program saved
over the one already there. That is, you can
WRITE PROTECTyour tape. To do this, you must break out the
small tabs on the rear of the tape. The proper one to break out
is the one on the left, when the side to be write protected is
facing up and the tape opening is facing toward you.

If you decide to reuse a write-protected tape, place a small
piece of cellophane tape over the write-protect opening.

Loading a program from tape
Make sure that you have properly connected the recorder to
the computer. If yo,u are not sure about this, consult your
computer manual. Now open the recorder lid by pressing the
STOP/EJEC key. Insert the cassette tape with the program
you wish to load and make sure it is fully rewound. Reset the
tape counter to 000. Now advance the tape to the start of the
program using the tape counter settings you wrote down when
the program was saved.

To load the program from the tape into the computer memory
type

CLOAD "filename"

The "filename" is the name of the program that you want to
load. You do not need to type the name of the program if you
are sure that the next program on the tape is the one you wish
to load. Merely type CLOAD and the computer will ask that you
press the 'Am key. The recorder will run for a short while
and the word READY. will appear. Now you can either RUN
the program or edit it. B
Using a diskette ~ ?

Programs can be saved onto diskettes using
a disk drive unit. A disk drive unit can
store many, many programs on it. The pro­
grams can be loaded at a later time.

p.36

Saving the program to disk
Make sure that the disk drive is properly connected to the
computer. If you are not sure about this, consult your com­
puter manual. Turn on the drive unit and place a diskette into
the drive. If your diskette has never been used before, then
you must format it before you save your program. See
Appendix B for instructions on this.

To save a program on diskette, type

SA VE "dr: filename"

The dr is the drive number you wish to use for program
storage. It is either 0 or 1. The "filename" is the name you
wish to give to your program.

You can also save entire sections or modules from your pro­
gram. If you wish to do this, you must specify the program
lines to be saved following the program name.

SAVE "dr: filename" ,x-y

The x is the first program line to be saved, and the y is the
last program line to be saved. Some examples are:

SAVE "0: STATES"

SAVE "1: QUESTION" , -300
SAVE "O:COMPARE" ,550-800

Save all of the STATES
program .

. Save lines 0 to 300
Save lines 550 to 800

When you press the l;fi.I,;U. key, the active light will come
on on the appropriate drive and in a few seconds the word
READY. will appear. When this occurs, the program has been
saved. The save a module option is not available to cassette
users.

A diskette can be Write protected. That is, you can prevent
any further programs from being saved on the diskette. If you
hold the diskette with the label right-side-up, you will see a
small notch on the right of the diskette. If you cover this notch
with a small piece of cellophane tape, the diskette is write
protected.

When you attempt to save a program on this diskette, the
computer will refuse to write on it. To write on the diskette
simply remove the tape.

p.37

Loading a program from diskeHe
Make sure that the disk drive is properly connected to the
computer. If you are not sure about this, consult your com­
puter manual. Turn on the drive unit. Now place a diskette
into the drive. Type

LOAD "dr:Filename"

The dr is the drive number of the disk drive into which you
placed your diskette. It is either 0 or 1. If you leave out the
drive number and colon (:), the computer will search both
drives of a dual drive for the program. The "filename" is the
name of the program you wish to load. When you press the
,;J,'o;U, key, the drive will run for a few seconds and the
program will be loaded.

When the READY. appears you can either EDIT, LIST, or RUN
the program in memory.

If you wish to RUN the program after LOADing it from disk,
you can do this in one step by typing

RUN "dr: FILENAME"

This acts just like a LOAD from disk, and then typing RUN
from the keyboard.

Appending a program
Usually a LOAD will write the program over whatever is in
memory. However, if you use the form

LOAD "dr: filename" ,x

the computer will LOAD the program called "filename" and
begin it at line x in memory. It will be added on to the current
program in memory beginning at line x. If any program lines
are in memory at or following line x, they will be over-written
by the new lines.

LOAD "O:TESTER" load the file TESTER
LOAD "1:GUESS",2200 load Guess beginning at

2200

This function is not available with the CLOAD command.

p. 38

Checking the Error Channel
Sometimes, when using the disk drive, the red light will flash
off and on (with the 1540/1541 and 2031 disk drives) or will
stay on (with the 4040, 8050 and 8250 disk drives). The red
light indicates there is a disk error. To check to find out what
that error is type ERROR on the Commodore-64 and VIC-20,
and type ?DS $ on all the other machines.

Disk Directory
After you have saved a number of programs onto a diskette,
you might want to see a list of all the programs on that
diskette. To do this type the word Directory, and a list will be
displayed on the screen.

p. 39

Quiz Younalt
I. Choose the best answer or answers for the following

multiple choice questions.

1. The JUMP Command tells the computer to jump

A. In a lake.
B. To the beginning of the program.
C. To a labeled statement.
D. To the preceding line.

2. To find out what programs are saved on a diskette, type

A. Save.
B. Directory.
C. List.
D. What's on the diskette, please?

3. A small piece of cellophane tape is useful for

A. Displaying an amusing cartoon on the wall.
B. Taping your neighbors mouth closed.
C. Write-protecting your diskette so that no more

programs can be save on it.
D. Unwrite-protecting your cassette so that you can

save more programs on it.

II. Write a program using statement labels, JUMP com­
mands and JUMP commands with conditionals statements.
Save your program on Datasette, or disk, or both.

p.40

IV.

NUMBERS AND VARIABLES

•

p.41

Chapter IV
This section is about numbers and how to use them in Vanilla
Pilot. Numbers can be present in two forms. One form of
number is an integer or a constant. That is, a whole number
whose value is specified in the program. The other form is a
variable. A variable is subject to change either by the user or
by calculations in the program.

Examples of integers ~re

1234
6879

882
-309

These are all
fixed numbers
whose value will
NOT change.

These values will stay the same all through the program.

A variable is a number that is subject to change during the
program operation. Often the programmer will not know its
value while writing the program. Below are some examples.

X=Y+4
The weather

The date

X and Yare variables.
Is a variable. It changes
all the time.
Is a variable. It changes
every day.

Think of a variable as a mail box. You generally know where it
is, but you don't know what it will contain. Like the postman,
the computer can have several boxes to fill with numbers.

The computer has 26 variables for you to use. When using
variables, give them names of the letters of the alphabet. The
variables can contain only the numbers between -999 and 999.
If you try to use a number outside this range, Vanilla Pilot will
give you an error message

VALUE < -999
VALUE >999

Also, use only WHOLE numbers in this range. Fractional
numbers are not allowed.

p.42

The COMPUTE Command .• C:
The COMPUTE command will allow you
to eValuate a numeric expression and
assign its value to a numeric variable.
The format for COMPUTE is:

C : numeric variable=numeric
expression

All calculations must be done with the
COMPUTE command. Some examples of
valid COMPUTE commands are:

C:X=X+5
C:Y=27
C:A=X-3+Y

119
The COMPUTE command can do only addition and subtraction.
Here is an example progr,am. : .

100 R:CALCULATOR
110 T :THIS IS AN ADDING MACHINE PROGRAM
120 T :TYPE -999 TO SHOW THE SUM.
130 T:
140 C:S=O
150 *ADDIT T :WHAT IS THE NEXT NUMBER?
160 A:#N
170 T:
180 M: - 999
190 JY: *END
200 C:S=S+N
210 J: *ADDIT
220 *END T :THE SUM IS #S.
230 E:

Besides the COMPUTE statements, this program has several
other features that we haven't seen before. First, is line 160
A: #N. This statement will ask for a numeric value and store it
in variable #N. Until now we have seen that the ACCEPT
statement will display a ? to prompt you that it is expecting an
input from you. This form of the ACCEPT statement will use a #
sign. This is to show that you can only enter a number.

Next, look at line 220*END T :THE SUM IS #S. The #S (the S is
a variable) in a TYPE statement will show the value of the
variable following the # sign.

p.43

Now let's RUN this program:

RUN

THIS IS AN ADDING MACHINE PROGRAM
TYPE -999 TO SHOW THE SUM.

WHAT IS THE NEXT NUMBER?
.34
WHAT IS THE NEXT NUMBER?
.45
WHAT IS THE NEXT NUMBER?
1-999
THE SUM IS 79.

READY • •
Now let us RUN this program again

RUN

THIS IS AN ADDING MACHINE PROGRAM
TVPE -999 TO SHOW THE SUM.

WHAT IS THE NEXT NUMBER?
1684
WHAT IS THE NEXT NlJ1BER?
1438
ERROR - C:S=S+N
OVERFLOW I N CALCULATION

READY • •
The error message here shows that the result of the addition
exceeded 999 and the program was stopped. As Vanilla Pilot
uses only numbers between -999 and 999, the same error
message would appear if the number was lower than -999.

There is one special form of the COMPUTE command

C: $=numeric expression

This will transfer the result of the numeric expression into the
ANSWER field. Since the MATCH command always compares
with the contents of the ANSWER field, this command format
permits the MATCH command to work on numbers. Study the
following program .

100 T :THIS PROGRAM WILL PRINT

p.44

100 T :THIS PROGRAM WILL PRINT
110 T: THE WORn HELLO 17 TIMES.
120 T:
130 C:A=O
140 C:B=17
150 *AGAIN T: HELLO
160 C:A=A+1
170 C: $=A
180 M: #B
190 IN: *AGAIN
200 T:
210 T :THAT'S ALL!
220 E:

The above program uses this special COMPUTE feature. Line
180 has is a MATCH command using a numeric variable. This
MATCH command will match the exact numeric values. If you
were to write 180 M: 17, then, because of the sliding window
match described in chapter II, the program would print HELLO
only once because 17 has the number 1 in it. As written, with
180 M: #B, the computer will print HELLO 17 times because this
version of the MATCH command is for exact matching if
numbers.

Try it!

The RANDOM NUMBER Command·· N:

A random number is any integer number between 0 and 99
generated by the computer. The format of this command is

N:x

where x can be any numeric variable between A and z.

Debugging a VANILLA PILOT Program '1

As you be~n to write /---'.. / ,------ - ~l\....
longer programs in Vanilla '---.: .--A /-
Pilot, you will almost cer- '--;,--' ~f1~
tainly come up with some " Ir. ~ ",{,
program errors or BUGS! ' . iV

UGH!!

Sometimes these bugs are
very easy to spot and ex­
terminate. Others are quite s:--. -

p.45

difficult to find. Vanilla Pilot has some <;ommands, both
immediate and deferred, to make this easy.

The TRACE Command
This very versatile command will allow you to watch a Pilot
program as it is running. It is an excellent way to check out a
program - you can watch what the program is doing and spot
where it gets into trouble. The TRACE command is also an
excellent teaching tool. A beginner can watch exactly what the
program is doing.

To start the TRACE type:

TRACE and press the ItJilll;U. key.

When you are ready to watch the program, type: RUN and
press the ItJi"I;J~. key.

The program line currently being executed will appear with
dark characters on a light background at the top of the screen
on the CBM and PET, machines. On the Commodore- 64 and
VIC-20 machines the color of the TRACE characters will
depend upon the color of the current programs lines that are
being executed. The program will execute exactly as it norm­
ally would, except much SLOWER. The lines at the top of the
screen will change about once every second.

You can slow this down by· pressing the 0'"" key (the
CONTROL key for the Commodore- 64). The TRACE will then

stop and wait for you to press the,'" •• (or r'~i';JI]' on
the 64) key again. When you press the ~1#11 • key, the
TRACE will display the next program line. It can be a little
tricky to exit this step mode. Usually pressing the "-..,111,- key
twice in very rapid succession will do the trick.

The trace can be speeded up to about a fourth as fast as the
program would normally run by pressing the '1'114;1*1 key
(the equals key on the VIC- 20). When you release this key,
the TRACE will go back to the one line per second mode.

Vanilla Pilot does the TRACE in the following fashion. It will
first print the line to be executed. Then execute the line.
Next, it checks for the ~..,:" •• or (I' iI 14;\fjl.1 keys or will wait
for a second. If you have a Pilot statement that affects the
first two lines (one line on an 80 column screen or four lines on
the VIC-20) of the screen, it may affect this area and cover or
erase the trace. Don't worry, this is quite normal. The trace
will appear when the next line is executed.

p. 46

The OFF Command
When the TRACE through a program is finished, type OFF and
press the l;li.IJ,U. key, the TRACE function is then turned
off. The TRACE will continue in effect until this command is
issued or the computer is switched off.

The Deferred Mode TRACE .. ! ·

Sometimes you will know the general area of the program where
your BUG is occurring. Using the Deferred Mode TRACE, the
program will exceute normally until it reaches that specially
marked section, then will trace through that section only. The
Deferred Mode TRACE functions exactly like the immediate
mode TRACE.

The format for the Deferred Mode TRACE is

I.

Locate the problem area in your program. Immediately before
that area, enter a program line containing an ! :. After the
suspected area, enter another program line containing an ! : .
The first ! : turns on the Deferred Mode TRACE; the second! :
turns it off.

The DUMP Command

This command will display a formatted listing of the contents of
the answer field, name field, yes Ino flag and the contents of
all 26 numeric variables. Simply type: DUMP and press the
1;11.11;10 key.

A typical screen display might look like this

p. 47

Stopping and R.starting a Program

There are times when you might wish to stop a Vanilla Pilot
program and begin again from that same point. You can stop
the program at any point by pressing the ,:Jil@'t?,.JiI key.
However, this does not always stop the program a a predict­
able point.

You can insert a H: command on a line in the area where you
wish to stop. This will halt the execution of the program and
return you to the Vanilla Pilot editor. You can then examine
variables, check the program code, etc.

p.48

RUN /STOP After either using the key or the H: command,
you can type CONTINUE and press the I;JiilI;U' key to
resume execution of the program. You can continue the pro­
gram execution unless you have done one of the following
things:

10 Edited a program line.
2. Pressed the 1311~~il.ii key in an ACCEPT command.
3. LOADed or CLOADed another program.
4. CSAVEed the program.
5. DELETEed a portion of the program.
6. Used the CHANGE command.

If you have done any of these things, then you cannot
continue with the program execution. The computer will
respond with

CAN'T CONTINUE

and refuse to continue with the program.

p.49

Quiz Yourself
I. Fill in the blank with the correct answer from the following

list: Variable, COMPUTE, RANDOM NUMBER, TRACE,
OFF, and DUMP.

1. T he command
lets you follow step by step what the program is
doing.

2. To let the computer choose a number between
o and 99 use the
command.

3. A is a number
that may be changed either by the user or a calcula­
tion.

II. Write a program to calculate how much money you will have
left after paying for all your necessities for a week. Round
off your numbers'to the nearest dollar. Use the TRACE
and the DEFERRED TRACE to see how your program runs
or to debug your program.

p. 50

v.

MODULAR PROGRAMMING

0- .,
1'- .

-, "

-:.~ .. '.:~i ,II' -
.:... .-.'-"-

p.51

Chapter V
As you become a more experienced programmer, you will start
writing longer, more complicated programs. You will find that
many groups of program statements are used repeatedly within
the same program. These statements could be repeated as
needed, but this can be very tedious. An accomplished pro­
grammer will group these statements that are to be used more
than once then branch to them as they are needed. A group of
statements like this is called a MODULE. Modules, also called
subroutines, are like miniature programs within a big program.

The use of modules is a powerful technique to streamline your
Vanilla Pilot programs. Using modules allows you to make your
programs easier to write, understand and modify. You can also
develop a set of modules and reuse them in many programs.
Vanilla Pilot programs can then be made shorter, thus, you can
do more things in a single program.

The beginning of a module is marked by a statement label. This
is followed by a set of program lines. When the module task is
done, then an END command is placed on the last line of the
module. This END command exits the module and returns to the
statement following the 'line which called the module.

Here is a sample module:

900 *NUMBER T: PLEASE ENTER A NUMBER
910 T :BETWEEN 0 AND 999;
920 A: #N
930 E:

Every time you go to this module the computer will ask for a
number between 0 and 999. This module, *NUMBER, could be
called whenever you wish to enter a number into the program.
At the end of the module, program execution returns to the
main program.

The USE command -- U:
A module is called with the USE command. The format is

U:label

This command is always part of the main program. It is not part
of a module, unless you wish one module to call another
module.

The USE command is much like the JUMP command in that both
will search for the line with the appropriate label. The differ-

p. 52

ence between them is that the USE remembers ,the location of
the line immediately following the USE command. When an END
command is found the program does not end, rather the pro­
gram returns to the main program immediately following the
USE command.

HINT: A module can be placed anywhere in the program; even
after the program END command. Vanilla Pilot will find the
module, if it exists. However, you should place all of your
modules at the beginning of your program so the program will
run faster. The computer starts searching at the beginning
of the program for a label.

The END command·· E:
THE END COMMAND MUST BE THE LAST STATEMENT OF A
MODULE.

The format for the END command is

E:

Earlier we learned that the END command ends the program.
The same END command used in a module will end that module
and signal the computer to return to the main program. The
END within a module does not end the entire program. The
computer knows the difference between a module END and a
program END.

A module can be nested. This means
that one module can call another
module. This in turn can call a third
module and so forth. Vanilla Pilot
allows up to seven nested modules in
each series of nested modules.
Whenever you nest a module, the
computer will remember the correct
line to return to when it sees an END
command.

When nesting modules, it is easy to make programming errors.
Errors like neglecting to end a module with an END command,
or calling more than seven nested modules. If you happen to do
so, this is the place where the TRACE (or the! :) command will
be a real value to you.

p.53

The USE with Conditional·· UJ:, UN:
A module can be called conditionally by changing the USE
command to include the Y or N conditionals. You have used
these before with the T:, E:, J:, etc. commands. Look at the
following example:

100 R: **** MENU PROGRAM ****
110 T:GUESS MY NUMBER
120 T :NIM
130 T:
140 T: \vHI CH GAME?
150 A: $
16'0 M: GUESS
170 UY: *NUMBER
180 UN: *NIM
190 E:
200 *NUMBER T:
210 T : HERE ARE THE RULES.

740 E:
750 *NIM T:
760 T:HERE ARE THE RULES.

990 E:

If GUESS or GUESS MY NUMBER is entered, the module
*NUMBER is called. If anything else is entered, the pro­
gram will call the *NIM module.

BEWARE - If you leave the module *NUMBER with the yes Ino
flag set to no, the computer will then call the *NIM module.

Here is a simple program to guess the computer's secret
number. It is a more complex program than any we have looked
at before. Try it!

100 R:GUESS MY NUMBER
110 T:GUESS MY NUMBER BETWEEN 0 AND 99!
120 C:C=O
130 C :B=O
140 N:R
150 *GUESS T :WHAT IS YOUR GUESS;
160 A: #G

p.54

170 C:A=G-R
180 C:C=C+1
190 C: $=A
200 M: #B
210 JY: *END
220 M:-
230 UY: *SMALL
240 JY: *GUESS
250 UN: *BIG
260 J: *GUESS
270 *END T :YOU GOT IT!
280 T :IT ONLY TOOK YOU #C GUESSES!
290 T:
300 T :MY NUMBER WAS #R.
310 E:
320 *SMALL T:
330 T: TOO SMALL!
340 T:
350 E:
360 *BIG T:
370 T :TOO BIG.
380 T:
390 E:

Enter the program and run it. It should look like this:

~'U~4

C,UE:::S t'1'T' t'JUm:E": :f:En~EEN (1 AND 99!
~~HAT 1':; ','OUF.: OUE:;;S#50

TOO l::IG
I~HAT I '3 ~'OUR GUE:3S#25
TOO SI'IALL

~~HAT IS YOUR GUES;:tU7
",'01.1 GOT I r'
1 T ONL'T' TOOK ','OU ~ Gl'ESSES

l'1Y t~U~IBER WAS :::7 ..

REAI"T' •
Study this program carefully. It contains a number of the
features that we have studied in Vanilla Pilot so far.

The LLiST and PLiST Commands

These two commands will assist you in getting a listing of a
program in a more readable format. LLIST will list a formatted
listing on the screen while PLIST will list to printer device #4.

p.55

If we' LLIST the program we just wrote, you can immediately
see that it is easier to read.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

LLIST

R: GUESS MY NUMBER
T : GUESS My NUMBER BETWEEN 0 AND 991
C:C=O

. C:B=O
N:R

*GUESS T :WHAT IS YOUR GUESS;
A: #G
C:A=G-R
C: C=C+1
C:$=A
M:#B
JY: #END
M: -
UY:*SMALL
JY: *GUESS
UN: *BIG
J: *GUESS

270 *END
280

T :YOU GOT IT!
T :IT ONLY TOOK YOU #C GUESSES!

290
300
310
320
330
340
350
360
370
380
390

T:
T:MY NUMBER WAS #R.
E:

*SMALL T:
T :TOO SMALL!
T:

'E:
*BIG . T:

T :TOO BIG.
T:
E:

Compare this listirig with the previous one. Here it is much
easier to see both the labels and the conditionals attached to
the commands.

p.56

Ouiz Yourself

I. Choose the best answer or answers for the following multiple
choice questions.

1. Another word for module is

A. Program.
B. Subroutine.
C. Statement.
D. Command.

2. To print your program on a printer, type

A. LIST.
B. PLIST.
C.Print.
D. LLIST.

3. Use the END Command, E: ,

A. At the end of your program.
B. When the screen is full.
C. At the end of a module.
D. At the end of each line.

II. Write a program using at least one module, or subroutine.

p.57

';.

jc~.~¥i~T';~~~· .'

,'-OW

. :.-

;; ~ ,

·;·V~tr;'~:;'iht'~~. :;;'~;?'t~::t*::.·:~(:.i;..,(·c,t.~~~~-'::; .;: 'c ...•• ~

...... ..": ".(~j;/~:?t~!~~0h:.>~~;,~.;.·.·,;
,,-: ..

~'. -~~ ',"

,,:# ~:~i~rt~;j~r: Jt\./'~;:·t~}~: .
. =!': '.,:

._ ~'~~'~'~., '--~~~_~i
!>n~;·'.~.:'.:·" ~ .. _. ,~', , ..

. :.. ~< ::1W;!:::·>·~:L·

; .

f.: •.. ;~.' ~':;' /.:"i~::::.'~ ;.

. '. i" :': .:i: .~'I:'
~. -', "'" l "';. •• .: ;. .:f"l,

-.', -(1- ':.'::~::'
, .:.":;;~ -'; -~

.. ·fr .• ··'- .. , ::~':' q :'-•••• ".\ .• < .. ~.: .. -'.r.'-'·' .' .~.: .. , ",,~~:,~,I., .'.' : >.,J.

-i

.... :.

";

VI.

THE SCREEN AND SOUND COMMANDS

100 R:*** TITLE PAGE PROGRAM
I 1 0 5: [
'20 5:05
130 S:R9
140 T.OEMONSTRATION PROGRAM
150 I

p. 59

As you are mastering the concepts of programming, frequently
you wish to dress up your programs by doing some fancy
things on the screen. Vanilla Pilot has a screen command which
offers a number of options for various screen functions. You
can position the cursor, set the screen display mode or any of
a number of other things.

The SCREEN Command .. S:
The SCREEN command offers the flexibility to do a number of
things on the screen. Let's look at these in groups. The first
group is the cursor control commands. The other group
includes a set of miscellaneous screen aids.

Moving The Cursor

Cursor control is accomplished by the following six commands

S:C
S:H
S:D5
S:U7
S :R13
S:L9

Clear the screen and home the cursor.
Home the cursor.
Move the cursor down 5 lines.
Move the cursor up 7 lines.
Move the cursor right 13 columns.
Move the cursor left 9 columns.

The commands with the numbers are examples only. You may
use any reasonable positive number for those commands. In
addition, the commands can take the form

S:R#C

This will move the cursor to the right by whatever value is
contained in #C.

Look at the following example

100 R: *** TITLE PAGE PROGRAM ***
110 S: C
120 S:D5
130 S :R9
140 T :DEMONSTRATION PROGRAM
150 S:D3
160 S :R19

p.60

170 T :BY
180 S :D3
190 S :Rll
200 T:TAMARACK SOFTWARE
210 S :D7
220 T:
230 E:

When you run this program, the screen will clear and then look
like this

This group of screen commands includes the following
commands

S:F
S:G
S:N
S:81
S:V

Reverse the screen.
Uppercase / graphics mode.
Lowercase/uppercase mode.
Set single or double spacing.
Set the reverse flag.

On the VIC- 20 and Commodore-64 there are two additional
commands.

S:Bx,y Set screen border (x), background (y)
color on the Commodore-64.

S:Bx Set the screen border, background
color on the VIC-20.

S:Ox Set character colors.

Let's look at each of these commands in more detail.

p.61

Screen Reversal

Try the following program

100 S:C
110 S :D5
120 T:HELLO
130 P: 99
140 S:F
150 E:

What happened?

U sing this program the screen will clear and the word HELLO
will be typed on the 5th line. There will be a pause of about 2
seconds (the PAUSE command seen in line 130 will be discussed
later). Following this the screen will reverse itself. What does
a screen reverse mean? The word HELLO' wilf now appear in
dark letters on a ligh,t background. You could return the
screen to its normal mode by clearing the screen OR executing
another S: F command.

Screen Mode Commands'

This pair of commands permits you to use the uppercase along
with either graphics OR lowercase characters. The S : G
command will set the graphics mode so that the computer will
have available the graphics on the keyboard and uppercase
letters. The S: N command will exchange 26 characters of the
graphics set for the lower case letters.

This will show some of the differences between the computers
. in the following table:

Display Mode

Computer S:G S:N

VIC-20 Power-on mode. Same as using SHIFT

Commodore-64
4000 series

8000 series

9000 series

"
"

and CBM logo keys.
"

Same as entering
POKE 59468,14.

Same as entering
POKE 59468,12.

Power-on mode.

" "
p.62

The term POWER-ON mode means the character set available
when you first turn on the computer. The table describes a
method of getting the alternate character set for each of the
computers. Note that, for the VIC-20 and Commodore-64
computers, this command does NOT affect the use of the
graphics characters shown on the LEFT hand side of the keys.

The Spacing Command

It is useful, from time to time, to have a command to permit
double or single spacing of the program output. Use of the
S : Sx command will permit you to switch between single and
double spaced output. This is a memory conserving command.
If you double space without using this command it will be
necessary to insert a TYPE command every other progTam line.
The S: S 2 command will con tin ue to output things double
spaced until you issue as: S 1 command or until the program
ends.

SeHing the Reverse Flag

This command is different from the
Screen Reverse command in that it
only affects the characters typed
on the next line of the screen. The
reverse flag is turned off whenever
the computer begins a new screen
line. Using this is equivalent to
pressing the "' •• W.Il.' key on the
PET ICBM computers and pressing
the •• ;1. and ... '.11. U. keys on
the VIC-20 and Commodore-64 com­
puters.

The following two SCREEN commands relate only to the
Commodore- 64 and VIC - 20 computer

Setting the Screen Colors

Commodore- 64 version

The screen colors can be set with the S :Bx,y command. The X
is the background color. This can be anyone of the standard
color numbers between 0 and 15. The Y is the screen color and
again can be anyone of the standard color numbers between 0
and 15. See your computer manual for the color numbers.

p.63

VIC-20 version.

The screen background and border colors can be set with the
S :Bx command. The X is any number from the table in
Appendix E in your computer manual.

Setting the Character Colors

The color of the next characters you TYPE on the screen ..can
be set by the S :Ox command. The X is anyone of the color
numbers from 0 to 15. This will affect the color of all
subsequent characters until the next S :Ox. See your computer
manual for the color numbers.

The SCREEN command includes a lot of options. Let's try a
program which will make use of many of these SCREEN
commands.

100 R: *** SPELLING PROGRAM ***
110 J: *START
120 *WAIT P: 25
130 S: U1
140 R:NEXT LINE PRESS THE SHIFT AND SPACE

BAR 25 TIMES
150 T:
160 A: $
170 E:
180 *PRES KEY S :D1
190 T :PRESS RETURN
200 A:
210 E:
220 *SETUP S: C
230 S :D3
240 T :NOW SPELL THIS WORD.
250 T:
260 E:
270 *S T AR T S: C
280 S:S2
290 T :THIS IS A PROGRAM TO TEST YOUR
300 T: SPELLING SKILLS. THE WORD
310 T: YOU ARE TO SPELL WILL APPEAR
320 T:BRIEFLY AND THEN BE ERASED.
330 T :YOU THEN MUST CORRECTLY SPELL
340 T: THE WORD.
350 U:PRESKEY
360 S: S 1
370 C:Y=O

p.64

380 U: *SET UP
390 T :COMPUTER
400 U:*WAIT
410 M: COMPUTER
420 SY:V
430 TY: CORRECT! !
440 CY:Y=Y+1
450 TN:SORRY, THE WORD IS COMPUTER!
460 U: *PRESKEY
~70 U:*SETUP
480 T :DISPLAY
490 U:WAIT
500 M :DISPLAY
510 SY:V
520 TY:CORRECT!!
530 CY:Y=Y+1
540 TN:SORRY, THE WORD IS DISPLAY!
550 U: *PRESKEY
560 U: *SETUP
570 T: KEYBOARD
580 U: *WAIT
590 M:KEYBOARD
600 SY:V
610 TY: CORRECT! !
620 CY:Y=Y+1
630 TN:SORRY, THE WORD IS KEYBOARD!
640 U: *PRESKEY
650 S:C
660 T:YOU GOT #Y RIGHT OUT OF 3.
670 T: KEEP STUDYING!
680 E:

Enter this program into your computer. Study the listing and
run the program. This program illustrates almost all of the
SCREEN commands, as well as many other commands. There is
one new command in line 120 of this program. The P: 25
command will PAUSE the program operation for about 0.5
seconds. This is discussed further in a later chapter.

p.65

The BEEP Command .• B: / ,
V=====5~/ ~?

The BEEP command is used to
generate sounds on the various
computers. It operates differ­
ently on the different com­
puters so you should consult
the appropriate section.

The Commodore· 64 Computer

The Commodore- 64 computer has available three separate
voices with each of the voices having separate parameter
controls, except for volume. The volume control is a master
control for all the voices; they cannot be controled separately.

B : parameter list

The parameters are

Attack/decay (A)

Sustain /release (S)

Waveform (W)

Volume (M)

High frequency (H)
Low frequency (L)

Duration (D)

Defines how fast your note
will rise to and fall from
peak volume levels.
Range 0 to 255.

How long to prolong a
note at a certain volume
level and release it .
Range 0 to 255.

Select one of the four
waveforms available.
Allowed values 17,33,65,129.

Set the volume of the
sound synthesizer. Range is
o to 15.

These two parameters must
be specified for each note
used. Both can be between
o and 255.

Set the duration of the note
(use 0 to 255).

p. 66

Voice (V) Specify which voice is to
be used (1,2 or 3).

High Pulse (R)
Low Pulse (P)

These two parameters must
be specified when wave form 65
is used. Both can be between
o and 255.

Each of these parameters may be specified by preceding it with
the capitalized letter shown in parenthesis above. For example

B: V1 ,H17 ,L37 ,D200,M5

This would turn on voice 1 with a high frequency specification
of 17 and a low frequency specification of 37. It would be on
for a duration of 200 units of time and have a volume of 5.

Every BEEP command MUST have the voice and frequency
specified. A B: command without any parameters will turn off
the synthesizer. The A, S, W, and M options must be done
BEFORE actually generating any sound effects. The VOICE
parameter must be specified first in any B: command.
Otherwise, the computer will not know where to place the sound
specifications. If the VOICE parameter is the only one listed,
then the computer will repeat the last sound specified.

For more details on the actual settings to be used see Chapter
7, Appendix M and Appendix P in your Commodore-64 User's
Guide. Advanced information can be found in the Programmer's
Guide. By the way, don't worry about POKEs and all of the
addresses mentioned in these references. Vanilla Pilot will take
care of all of those details for you!

Here is an example of a simple sound effects demonstration
program

100 R: ** SHOOTING SOUND **
110 C: 1=15
120 C:E=O
130 *SHOOT B:V1,W129,A15,H40,L200,M#1
140 P: 2
150 C :1=1-1
160 C: $=1
170 M: #E
180 IN: *SHOOT
190 B:
200 E:

Try it! Then experiment with various sound effects.
p.67

The VIC· 20 Computer

This computer has a single voice with three ranges and a noise
channel. Each of these ranges is controlled by entering a
number between 128 and 255. This number is related to the
frequency. See Chapter 5 and Appendix F of your VIC-20
manual for details on this.

The format for this command is

B : parameter list

The parameters are

Volume (V)

High note (H)

Mi.d note (M)

Low note (L)

Duration (D)

Set the volume of the
sound synthesizer. Range is
o to 15.

Set the frequency of the
high voice. Allowed range is
128 to 255.

Set the frequency of the
middle voice. Allowed range
is 128 to 255.

Set the frequency of the
low voice. Allowed range is
128 to 255.

Set the duration of the note.
Allowed range is 0 255.

Each of these parameters may be specified by preceding it with
the capitalized letter shown in parentheses above. For example

B:V12,M151,D10

This would turn on the middle voice frequency specification of
151. It would be on for a duration of 10 units of time and have
a volume of 12.

p. 68

Every BEEP command MUST have the volume and frequency
specified. A B: command without any parameters will turn off
the synthesizer. If you do not specify the duration parameters
then the voice will sound until the next B: command.

Here is an example of a simple sound effect.

100 R:**SIREN**
110 C: 1=15
120 C:E=O
130 C: F=225
140 *SIREN B:V15,H#F
150 P: 30
160 B:V15,M#F
170 P: 30
180 C:I=I-l
190 C: $=1
200 M: #E
210 IN: *SIREN
220 B:
230 E:

Try it! Then experiment with various sound effects.

The CBM and PET Computers

These computers have a single voice with a frequency control.
The computers with the 12" video monitors have a chimer built
in. The versions with the 9" monitor will have to have a small
amplifier and speaker attached to the User Port. Your dealer
should be able to help you with this.

The format for the BEEP command is

B: frequency (,duration)

The frequency is not a direct frequency, rather it is a number
between 0 and 255 which the computer translates into a fre­
quency. The frequency can be approximately calculated by the
following equation

500000
8(s+2)

where s is the value you use for the frequency in the BEEP
command.

p.69

The duration is an optional parameter. If you do not specify
the duration, as a number or variable between 0 and 255, the
computer will continue to make the sound UNTIL the next BEEP
command. If the next BEEP command contains a duration the
sound will stop.

OUIZ YOURSELF

1. Write a program to display your name in the top left
corner of the screen, the middle of the screen, and the
bottom right of the screen.

2. If you have a Commodore-64 or VIC-20, add color.

3. Then, using the same program, REVERSE the screen. To
have the program pause for about 2 seconds, use the com­
mand P: 99 before your REVERSE command. For the ambi­
tious programmer, use the REVERSE in a subroutine and
have the screen reversing several times.

4. Add sound to your program. The ambitious programmer
can have the sound change every time the screen reverses.

p.70

VII

TURTLE GRAPHICS

p.71

Chapter VII
You have made it to the fun part of Vanilla Pilot! The Turtle
Graphics is one of the most enjoyable and flexible features of
Vanilla Pilot. Now you can begin the exciting task of drawing
figures and pictures!

The GRAPHICS Command .. G:
There are a number of capabilities with the GRAPHICS
command. This command must be handled by a set of
subcommands, much like the SCREEN command. These
subcommands tell the computer what graphics operations to do.

Here is a list of the graphics subcommands:

CLEAR
DIRECTION d
DOWN
DRAW d
ERASE d
GOTO x,y
LEFT d
LOCATE x,y
RIGHT d
UP

Initialize graphics mode.
Face the turtle to d degrees.
Place the pen on the screen.
Draw a line d units long.
Erase a line d units long.
lVIove the turtle to x, Y .
Turn left d degrees.
Find the turtle's location.
Turn right d degrees.
Lift the pen from the screen.

The VIC-20 and Commodore-64 have the additional commands:

COLOR c
GETCOLOR x,y,c
LOCATE x,y,c

Beginning concepts

Set the pen to color c.
Get the color of location x, y .
Like the LO CATE above sets pen
color.

Turtle graphics is a system of graphics designed by Dr.
Seymour Papert and the LOGO group at the lVIassachusetts
Institute of Technology. In the Turtle Graphics system, the
computer screen becomes a playground for a tiny invisible
turtle. The turtle is always at the center of an invisible circle
that always moves with him. This circle is divided into 360
segments or angles, each measuring one degree, with the angle
of zero degrees pointing to the right of the screen. The turtle
can be facing anyone of these 360 segments.

The turtle can turn left or right in any of 360 different angles.
If the turtle is facing the top of the screen, he is facing 90

p. 72

degrees. If he is facing the bottom of the screen, then he is
facing 270 degrees. The left side of the screen is 180 degrees.

90

180 --t--- 0

270

When you draw a line, the turtle moves from his current
position along his current direction to a new position on the
screen.

The turtle's position on the screen is determined by a system
of coordinates. The top left hand corner of the screen is 0, a
while the bottom left hand corner of the screen is 0,49. The
center of the screen is 39,24 (79,24 on an 80 column screen,
23,22 for the VIC- 20). There is a total of 4000 points on the
screen (8000 on an 80 column screen). The range is 0 to 79 (159
on the 80 column computer) horizontally and a to 49 vertically.

1

2

3

4

5

6

o 1 2 345 6 7

The CLEAR Subcommand

I

)

j

This command will initialize the turtle. The format for the
CLEAR subcommand is

G:CLEAR

p.73

This command does several things:

1) Clears the screen.
2) Puts the turtle at location 0, O.
3) Puts the pen DOWN.
4) Sets the turtle's direction to O.
5) Sets color to 0 or black.

It is best to begin any program using Turtle Graphics with a
CLEAR subcommand. That way you know exactly where the
turtle is located.

The DIRECTION Subcommand

The DIRECTION subcommand will set the direction that the
turtle is facing. The format is

G:DIRECTION angle in degrees

Some examples

COMMAND DIRECTION

G: DIRECTION 180
G :DIRECTION 315

G :DIRECTION 135
G :DIRECTION #A

Faces the turtle left.
Down and to the right.

Up and to the left.
Face the direction that
is specified by variable A.

This subcommand is in reference to a fixed point of reference.
That fixed point is that DIRECTION 0 faces the right side of
the screen and the angle increases to 359 in the
counterclockwise direction. Every time you set the DIRECTION,
you will change the direction the turtle is facing to whatever
angle you specify.

For example, the turtle is facing 90 degrees and you issue a

G:DIRECTION 225

The turtle will change directions from facing to the top of the
screen to facing down and to the left.

p.74

90
old
direction

after
G:DIRECTION 225

225

The DRAW Subcommand
The DRAW subcommand draws a line the
number of units specified in the current
DIRECTION. The format for the DRAW
subcommand is

G:DRAW line length

Some examples are

G :DRAW 50 Draw a 50 unit line.
G:DRAW #1 Draw a I unit line.

Now let's put this all together

100 R: *** BOX #1 ***
110 G:CLEAR
120 T :DRAW A BOX
130 G:COLOR 2
140 G:GOTO 25,25
150 G :DRAW 20
160 G :DIRECTION 270
170 G :DRAW 20
180 G:DIRECTION 180
190 G :DRAW 20
200 G :DIRECTION 90
210 G :DRAW 20
220 E:

This program will first clear the screen and draw a line to DIRECTION 0 and complete the box drawing a line in each of the four directions.

If you are using a 40 column or 80 column PET or CBM, do not type in line 130.

RUN the program. You should see a box on the screen.
p.75

NOTE: This program and the others in this chapter were de­
signed for use on a 40-column screen display. If you are using
a VIC-20 or 8032 computer you may need to make some adjust­
ments to the locations and line lengths.
Also, if you are using a Commodore-·64 or Vic- 20, add a line
for color.

The LEFT and RIGHT Subcommands

The DIRECTION subcommand is useful when turning the turtle
to face another direction. Sometimes however, it is more useful
to be able to turn the turtle to a direction relative to his
current direction. The LEFT and RIGHT subcommands do this
for you. The format is

G: LEFT 90 Turn left 90 degrees.
G:RIGHT #R Turn right R degrees.

Let's go back to the BOX program above and draw it again with
the LEFT and RIGHT .subcommands

100 'R: *** BOX #2 ***
110 G:CLEAR
120 T :DRAW A BOX
130 G:GOTO 25,25
140 U: *SIDE
150 U: *SIDE
160 U: *SIDE
170 U: *SIDE'
180 E:
190 *SIDE G:DRAW 20
200 G:RIGHT 90
210 E:

Run this program. It should draw a box just like the first BOX
program. But there is one difference - This time you can draw
a box at ANY angle.

Try it! Enter a new program line

125 G :DIRECTION 45

Now run the program again. This time the box should be tilted
at a 45 degree angle.

If you specify any angle between 0 and 359, the box will be
drawn at that angle.

p.76

The ERASE Subcommand

The ERASE subcommand is just the opposite of the DRAW subcommand. If you erase a line it will be converted to the background color. It is as if you erase a line from your paper. If you erase it properly, you will not be able to see it later. The format is

G : ERASE line length

Some examples are

G :ERASE 35 Erase a 35 unit line.
G : ERASE #K Erase a K unit line.

If you are working on the Commodore-64, the line will be set to the current background color.

To illustrate this lets modify the BOX program again

100 R: *** BOX #3 ***
110 G:CLEAR
120 T :DRAW A BOX
130 *START G:GOTO 25,25
140 U: *SIDE
150 U: *SIDE
160 U: *SIDE
170 U: *SIDE
180 U: *ESIDE
190 U: *ESIDE
200 U: *ESIDE
210 U: *ESIDE
220 J: *START
230 E:
240 *SIDE G :DRAW 20
250 G:RIGHT 90
260 E:
270 *ESIDE G :ERASE 20
280 G:RIGHT 90
290 E:

This time when you run the program you will see the box flashing on and off on the screen.

The DOWN and UP Subcommands
These subcommands direct the graphics pen to be either UP or DOWN. If the graphics pen is DOWN, then the DRAW and

p. 77

ERASE subcommands will act as described. If the graphics pen
is UP, then the DRAW and ERASE commands will only move the
pen to a new location. There will be no apparent action on the
screen. The format for these subcommands are

G:DOWN
G:UP

The COLOR subcommand

The COLOR subcommand will permit you to change the color of
the pen that the turtle carries. This color number can be 0 to
15 and corresponds to the standard colors available on the
these computers. These colors are

VIC-20 and
Com modore - 64 Commodore-64 only

0 Black 8 Orange·
1 White 9 Brown
2 Red 10 Light Red
3 Cyan 11 Gray 1
4 Purple 12 Gray 2
5 Green 13 Light Green
6 Blue 14 Light Blue
7 Yellow 15 Gray 3

The default color is Black (0). The pen color remains constant
until it is changed in the program.

Note that there is one pecularity of the colors on the
Commodore-64. A line is drawn using the quarter-square
character. These appear as the left hand characters on the D,
F, C, and V keys. There are a total of 16 possible
combinations using this small square. The organization of the
screen is such that, even though we may see crossing lines,
there may be up to four small squares in a single character
position. It is not possible to have a separate color for each of
these squares. Thus, when two lines cross, the squares from
BOTH may well be the color of the second line.

The LOCATE Subcommand

The LOCATE subcommand allows you to find the location of the
turtle and transfer the coordinates to variables. The format is

G:LOCATE #X,#Y

p. 78

This will transfer the X and Y coordinates to the variables #X
and #Y. It doesn't matter which numeric variables you use,
the #X and #Y variables are examples only. The LOCATE
subcommand will also allow the format LOCATE #X. This will
find only the X coordinate.

The VIC-20 and Commodore-64 have an additional option for
the LOCATE subcommand

G:LOCATE #X,#Y,#C

If the parameter #C is specified, then the current pen color
will be transfered to the numeric variable #C.

The GETCOLOR Subcommand

This subcommand will allow you to transfer the current color of
a specific screen location into a variable. The format is

G:GETCOLOR #X,#Y,#C

Some formats for this subcommand are

G:GETCOLOR 41,25,#A
G:GETCOLOR #X,18,#A
G:GETCOLOR #A,#B,#C

Find the color of 41,25.
Find the color of #X, 18.
Find the color of #A, #B .

where the #X and #Y are the coordinates of the screen location
whose color you wish to find. The computer will look at the
location on the screen and return the color in the numeric
variable specified as the last variable in the list. The X and Y
coordinates can be specified either as integers or as variables.

Now let's put it all together. Enter and RUN the following
program you should see a beautiful flower-like design appear
on the screen.

100 R: *** SPIRAL FLOWER ***
110 G:CLEAR
120 C :J=8
130 G:GOTO 40,25
140 G:DIRECTION 0
150 C:I=O
160 *SPLOOP U:DSPIRAL
170 G:LEFT 45
180 C:I=1+1

p. 79

190 C: $=1
200 M: #J
210 IN: *SPLOOP
220 P: 99
230 E:
240 *DSPIRAL C: K=O
250 *SPIRALI G: DRAW 10
260 G:RIGHT 45
270 C:K=K+1
280 C:$=K
290 M: #J
300 IN: *SPIRAL1
310 E:

Quiz Yourself
I. Match the Turtle graphics command with its function.

1. Direction d:, - Find the turtle's location.

2. Left d - Move the turtle to x, y •

3. Goto X',y - Draw a line d units long.

4. Draw d - Turn left d degrees.

5. Locate x,y - Face the turtle to d degrees.

II. Draw a turtle. If you have a Commodore-64 or VIC-20,
color him.

p. 80

VIII

SOME ADVANCED CONCEPTS

p. 81

Chapter V III
In this chapter we will cover some advanced concepts of
Vanilla Pilot programming. These deal with some new commands
and some new uses of familiar commands.

The PAUSE Command .. p:
The PAUSE command is a means of delaying the execution of a
program. With it you have a delay range from about .02 to 2.8
seconds. The format is

P:x

The x can be either an integer or a variable with a range of 0
to 127. The time increment for each unit of change in the value
of x is about. 021 seconds. Thus the command

P:55

will delay the program approximately 1.15 seconds.

The NAME Field
The NAME field is a region in memory much like the ANSWER
field. The ANSWER field is used whenever you type anything
into the computer, and whenever you use the MATCH
command. The!'e are times, however, when you wish to enter a
string, like the user's name, which will not be affected over
the course of the program; this is the purpose of the NAME
field.

You have only one way to enter data into the NAME field and
that is via the ACCEPT command.· The NAME field is
designated by a question mark in the ACCEPT command (?)

A:?

With this command the keyboard input is transfered to both the
NAME and ANSWER field.

When you wish to use the NAME field, you can print it in a
TYPE command using the following format

T:$?

This will TYPE the contents of the NAME field.

p.82

The following program should give you some ideas about the
NAME field

100 R: *** NAME FIELD DEMONSTRATION
110 S:C
120 S:D3
130 T : HELLO THERE!
140 T:WHAT IS YOUR NAME;
150 A:?
160 T:
170 T : GLAD TO MEET YOU, $?
180 T :BYE FOR NOW!
190 E:

TYPE Reserved Characters

•

There are three reserved characters which normally mean
something to the TYPE command. These characters (#, $, and
;) tell the TYPE command to do something special. Thel'e are
times, however, when you would wish to type these characters
as a part of your screen display. This can be done by
preceding them with a dollar sign ($). For example

100 T:YOU WON $$1.00!

would displ~y on the screen as

YOU WON $1. OO!

Notice that the FIRST dollar sign does NOT print. The same is
true for either of the other two reserved characters.

The JUMP Commands .. J:? and J: @

There are two reserved labels f~r the
JUMP command; These are the? and @
symbols. The format for using these
are

J : ? Jump to the last ACCEPT.
J : @ Jump to the start of the program.

p. 83

The first one will jump to the line containing the last ACCEPT
command. Each time an ACCEPT command is executed the line
number of that command is saved. Thus, the J:? is faster than
a JUMP to a label.

The other, J: @, is a JUMP to the beginning of the program. It
is equivalent to RUNning the program again. That is, the
variables are all reset to zero and all of the other internal
pointers reset to the starting values.

The WAIT Command .. W:
The WAIT command will get a single character from the
keyboard. This command has several options. These are:

W:*

W:$

W:?

W:

Check keyboard on the fly.
Save any keystroke in the
answer field.
Wait for keystroke.
Save character in the
answer field.
Wait for keystroke.
Save character in both
name and answer field.
Wait for keystroke.
Do not save the character.

By now some of the concepts in this table should be familiar to
you. Look over each of these options.

The W:* Command

This command is useful for such things as interactive
animation. Here the computer checks to see if any key has been
pressed. If no key has been pressed, it will go process any
other necessary details, then check the keyboard again. When
a key is pressed, the character corresponding to the key
pressed will be saved in the ANSWER field.

The W:$ and W:? Commands
These commands work much like the W: * command, except they
will wait until a key is pressed. When the key is pressed, the
value is transferred to the ANSWER field for the W: $ command
and to both the NAME and ANSWER fields for the W:?
commands.

p.84

The W: Command
The W: command will wait for the key to be pressed. However,
unlike the previous commands will NOT save the character
corresponding to the key pressed.

Final Editor Commands

Here you have the capabilities
to search the Vanilla Pilot pro­
gram for a particular sequence
of characters, OR to search for
and then change that sequence
of characters.

The FIND Command
The FIND command lets you search for a particular set of
characters in the Pilot program. The format for this is

FIND Istring/(,range of lines)

Some examples are:

FIND IJ: *START I Look for the command
J: *START in the program.

FIND IHELLOI,500-650 Search for HELLO in
lines 500 to 650.

FIND I #C I ,250- Find all occurrences of
#C after line 250.

The slash (f) character is called a DELIMITER. That is, a
character which surrounds or limits the set of characters you
wish to find. This can be ANY character you choose, except
those found in the search string. In addition, both of the
delimiters must be the SAME character.

The FIND command can be useful to assist in locating specific
portions of your program for study and lor modification.

The CHANGE Command
The CHANGE command is much like the FIND command in that it
will allow you to find a set of characters, but includes the
additional function to modify or change the character set it
finds. The format for this is .

p. 85

CHANGE /string /string / (, range of lines)

Some examples are:

CHANGE /J:*START/J:*BEGIN/ Change every J:*START
to .J: *BEGI N in your
prov,ram.

CHANGE /#C/#R/,500- Change all occurrences of
#C to #R after line 500.

CHANGE /HELO /HELLO /,200- 400 Correct the spelling of
HELLO between lines 200
and 400.

These commands will permit you to modify any program
information in any portion of your program.

o uiz Yourself

1. Choose the best answer or answers for the following
multiple choice questions.

1. The NAME field is used to

A. Store the same information that is in the ANSWER
field.

B. Store string-s which will not change during the
prog-ram execution.

C. Store the name of' the program.
D. Store the name of the person writing the

prog-ram.

2. The.JUMP command, J:?, jumps

A. To the last ACCEPT statement.
B. To the start of the prog-ram .
C. To the next MATCII command.
D. To the end of the prog-ram.

3. The CHANCE command

A. Chang"cs thc scrcen to reverse.
B. Chang"es the line numbers.
C. Chang-es the color for thc VIC - 20 and

Commodore - G4.
J). Finds :md chang-es a set of numbers.

p. 86

Appendix A

PILOT REFERENCE MANUAL
Appendix A, the PILOT REFERENCE MANUAL, is divided into
two parts: Editor commands and Pilot interpreter commands,
with the commands in each part listed in alphabetical order.

Pilot program entry is much like BASIC program entry. The
Pilot interpreter makes full use of the screen editing available
on the PET and CBM computers. In addition, there are a
number of commands designed to make editing and debugging
easier.

Some of the commands in the following list may be used with
conditionals; they are enclosed in parentheses or brackets.
While conditionals are not required, they add some flexibility
to the operating system. Any immediate mode command or
statement from BASI C is also available. All commands are to be
entered using UNSHIFTED letters.

PILOT Editor Commands

AUTO nn
This command will permit automatic numbering of the program
source code. To enable auto line numbering, type the command

AUTO nn

where nn is the increment between line numbers. To disable
the auto line numbering, type

AUTO

with no increment.

BASIC
When you are ready to exit the PILOT interpreter and return
to BASI C, type

BASIC

and the computer will transfer you back to BASI C.

p.87

CHANGE /oldstrin!ilnewstring/ (, start #-end #)

Here you can exchange all references to an old string to a new
string. Unless a range of line numbers is specified, then the
changes will be made through the entire source. The / above is
a delimiter. This delimiter may be any character not found in
either the old string or the new string.

CLOAD "Filename"
Using the command

CLOAD "filename"

will load the program "filename" from cassette number 1.

CONTINUE
By typing

CONTINUE

you can restart the execution of PILOT program, after either
the RUN /STOP key has been pressed OR, after an H:
statement has been executed. Editing the program,
encountering a PILOT error message, or pressing RUN /STOP
during a A: or W: statement will call a

CAN'T CONTINUE

error message.

CSAVE "filename"
To save a program on a cassette tape, type

CSAVE "filename"

and the program will be saved to cassette number 1.

DELETE start# - end#
The DELETE command will remove a range of the source
starting with (and including) the line specified by start# and
ending with (and including) the line specifed by end#.

DUMP
The DUMP command will display the contents of the answer

p.88

field, name field, matchflag, and all of the numeric variables.

FIND Isearchstringt (, start#-end#)
Use this command to find and print all occurrences of a
searchstring either in the entire source or within the range
specified by (, start#-end#). The / above is a delimiter. This
delimiter may be any character not found in the searchstring

LIST (start#-end#)
To display your PILOT program on the screen, type

LIST

This is an unformatted listing, and would appear like the short
PILOT prog-ram below:

100 s:c
110 c:t=O
120 *rvsloop t: hello there
130 d: 5
140 c:t=t+1
150 c:$=t
160 m: 6
170 sy:v
180 sy:h
190 jy: rvsloop
200 e:

Press the space bar, and the listing will stop. Press any key,
and the listing will resume.

LLiST (start#-end#)
Typing LLIST will also list your PILOT program code, but as a
formatted listing. To make it easier to study your program, the
various sections are put into columns. Notice when the same
program LISTed above is LLISTed below.

100 s c
110 c : t=O
120 *rvsloop t : hello there
130 d : 5
140 c t=t+1
150 c $=t
160 m 1,3,5
170 sy: v

p. 89

180 sy:h
190 jy :rvsloop
200 e :

LOAD" dr : filename" (, start#)
The LOAD command is exactly like the CLOAD command, but
will load the PILOT source from disk device #8 instead of from
cassette. If the drive number. dr. is specified, then the
diskette in that drive will be searched; otherwise both drives
of a dual disk will be searched. The optional parameter
(. start#) will append the program being loaded from the
diskette to the program in memory starting the numbering from
the line number specified. If the program in memory contains
line numbers with that range. the incoming program will write
over them.

OFF
The OFF command turns off the TRACE function.

PLiST (start#- end#)
PLIST lists the PILOT source that is in memory to IEEE device
#4. It is like the LLIST command in that the code is formatted.

Press the space bar. and the listing will stop. Press any key.
and the listing will resume.

RENUMBER start#, newstart#, increment#
The RENUMBER command allows easy renumbering of the
source. To use the command

RENUMBER

with no conditionals. starts renumbering at the beginning of
the source giving the first line the number 100, and numbering
each successive line 10 increments apart.

The conditionals allow you to start at any point in the source
and renumber from there to the end. You also determine what
line number the new start line will be called and the increment
between lines. For example. to renumber the following
program:

100 s:c
110 c:t=O

p.90

120 *rvsloop t: hello there
130 d: 5
140 c:t=t+1
150c:$=t
160 m:l,3,5
170 sy:v
180 sy:11
190 jy:rvsloop
200 e:

If the command

renumber 100,500,10

is issued, the renumbered source will be:

500 s:c
510 c:t=O
520 *rvsloop t: hello there
530 d:5
540 c:t=t+l
550 c: $=t
560 m:1,3,5
570 sy:v
580 sy:h
590 jy: rvsloop
600 e:

Line numbers are only significant when the source is being
edited. All programs are renumbered when CLOADed or
LOADed from the mass storage device. The interpreter ignores
the line numbers when running the program.

RUN (" filename" {, start#})
The RUN command will begin executing the PILOT program in
memory. If a filename is specified, then the program is LOADed
from the disk and is executed immediately. If the optional
parameter [,start#] is specified, then the file from disk will be
appended to the program in memory BEFORE it is RUN.

SAVE "dr : filename" (, start#- end#)
The SAVE command is exactly like the CSAVE command. but it
will permit saving the source onto disk drive de\7icc #8. The
drive number, dr, must be specified for a proper save. If the
optional parameters (. ",~~;rtT:- c;,u#) are specified, then only
that portion of the lJl'ogTam wi~~ l)e saved.

p. 91

TRACE
The TRACE command prints each line of the program as it is
being executed to allow you to see step by step what is
happening in your program. The program lines are displayed at
the top of the screen with dark characters on a light
background for the CBM and PET, and with whatever the
currently executed color for the VIC-20 or Commodore-64.

To start the TRACE, type

TRACE

When you type

RUN

the TRACE begins.

There are several options with the TRACE command. First,
you can let the computer control the TRACE with each line
executing at the speed of around one line every second.
Second, you can step through the program by pressing the
SHIFT key, the CONTROL key for the Commodore- 64, The
TRACE will then stop until you again press the SHIFT or
CONTROL key. Third, to speed up the TRACE to about a
fourth of normal executing speed, press the equal key for
the VIC-20 or Commodore-64, and the OFF IRVS key for the
CBM or PET.

UNNEW
This will permit you to recover a program, if you accidently
type NEW. This recovery can take place, only if you have not
entered any program lines or LOADed a program from disk or
tape.

p. 92

PILOT INTERPRETER STATEMENTS
PILOT program statements all take the form:

[label] statement (conditional): (operand)

An example of this would be the line:

* start ty: hello there

On execution the label is ignored UNLESS needed by either a
USE or JUMP statement. The program line would be read as
follows:

Type, if the result of the last match is YES, the words 'hello
there' .

Variable types and memory allocation:

*

*

*
*

Numeric variables are always preceded by a number
sign, '#'. This is true anywhere EXCEPT in the COMPUTE
statement. The COMPUTE statement ASSUMES that all
variables are numbers. Numeric variables may be named
using any of the 26 letters a to z. Numeric variables are
limited to the range of numbers between - 999 and +999.

The answer field is the input buffer AND workspace for
the match statement. Thus, it is not directly accessible
from the program.

The name field can be used to store any data.

The matchflag is used to store the result of the last
match. It is unchanged until the next match is executed.
On startup the match flag will match neither a yes or a no
conditional. Execution of a statement will occur if no con­
ditional is found. 0t11erwise the statement will be exe­
cuted only if the matchflag is the SAME as the condi­
tional.

Any statement which is not in the required format will be
printed as

error - statement

This line will print the statement BEGINNING at the character
where the error occurrs. Other error messages are listed with
the option where the message will occur.

p.93

Followini; is a description of the individual PILOT statements.

THE ACCEPT Command A: (operand)

When you want the user to type something during the running
of a program use the ACCEPT command. Using the following
operands with the ACCEPT command will also allow several
types of input as follows:

#x

$

?

- Accept only the numbers - 999 - +999 and the
minus sign (-). All other characters are ignored.
Ignore the actual keystrokes.

- Accept a number from the keyboard and save it
in the numeric variable x.

- Accept the input of any characters on the
keyboard. Save it in the answer field.

- Save the input in BOTH the name and answer
fields.

- Do not save the input at all.

If you press the RUN /STOP key on the computer, the program
will stop.

Error messages -

A numeric input outside the range of - 999 to +999 will generate
the appropriate message

VALUE < -999
VALUE> 999

and prompt for another input.

The BEEP Command B: frequency (, duration)

This routine will sound either the CB 2 line or the internal
beeper at frequency. If the optional parameter duration is not
specified then the sound will continue until the next B:
command. These values should be between 0 and 255. Any
values over 255 will have 255 subtracted from them.

p.94

The Commodore-64 B: command

The Commodore- 64 B: command is considerably more complex command than the CBM or PET BEEP command. Here you have eight parameters you can specify. These are

Attack/decay (A) Defines how fast your note
will rise to and fall from
peak volume levels.
Range 0 to 255.

Sustain/release (S) How long to prolong a
note at a certain volume
level and release it .
Range 0 to 255.

Waveform (W) Select one of the four
waveforms available.
Allowed values 17,35,65,129.

Volume (M) Set the volume of the

High frequency (H)
Low frequency (L)

Duration (D)

Voice (V)

sound synthesizer. Range is
o to 15.

These two parameters must
be specified for each note
used. Both can be between
o and 255.

Set the duration of the note.
(use 0 to 255)

Specify which voice is to
be used (1, 2 or 3).

Each of these parameters may be specified by preceding it with the capitalized letter shown in parenthesis above. For example

B: V1, H17 ,L37 ,D200,M5

This would turn on voice 1 with a high frequency specification of 17 and a low frequency specification of 37. It would be on for a duration of 200 units of time and have a volume of 5.

Every BEEP command MUST have the voice and frequency specified. A B: command without any parameters will turn off the synthesizer. The A, S, W, and M options must be done BEFORE acutally generating any sound effects. The VOICE
p. 95

parameter must be specified first in any B: command,
Otherwise, the computer will not know where to place the sound
specifications. If the VOICE parameter is the only one listed,
then the computer will repeat the last sound specified.

The VIC-20 B: Command

This VIC-20 computer has a single voice with three ranges and
a noise channel. Each of these ranges is controlled by entering
a number between 128 and 255. This number is related to the
frequency. See Chapter 5 and Appendix F of your VIC-20
manual for details on this.

The format for this command is

B : parameter list

The parameters are

Volume (V)

High note (H)

Mid note (M)

Low note (L)

Duration (D)

Set the volume of the
sound synthesizer. Range is
o to 15.

Set the frequency of the
high voice. Allowed range is
128 to 255.

Set the frequency of the
middle voice. Allowed range
is 128 to 255.

Set the frequency of the
low voice. Allowed range is
128 to 255.

Set the duration of the note.
Allowed range is 0 to 255.

Each of these parameters may be specified by preceding it with
the capitalized letter shown in parenthesis above. For example

B: V12,M 151,D 10

This would turn on the middle voice frequency specification of
151. It would be on for a duration of 10 units of time and have
a volume of 12.

p.96

Every BEEP command MUST have the volume and frequency specified. A B: command without any parameters will turn off the synthesizer. If you do not specify the duration parameter, then the voice will sound until the next B: command.

The COMPUTE Command C: equation
The COMPUTE command can accept a variety of operations. Acceptable formats for the equations are:

a=b+c
a=b+50
a=b-c
a=b-50
a=-b+75
a=-b-75

$=a

Error message -

The first six equation types are samples
of the possible operations. Multiple
additions and subtractions are possible.
Any combination of integers and numeric
variables can be used. No multiplication
or division is available.

The $ is required before using a match
with a numeric variable. Transfer the
number to the answer field.

If the result of the calculation is outside the range of - 999 to +999, the interpreter will print the error message:

error - c: equation
overflow in calculation

The END Command E:
The END statement will either end the program OR return to the main programfrom the last open USE (or subroutine) statement.

The Deferred Mode TRACE Commandl:

The deferred mode TRACE statement will turn the TRACE function on, if it is off, or off, if it is on. Use the deferred mode TRACE to trace through a section of the Pilot program source.

p.97

The GRAPHICS Command G: subcommand
This command allows entry to the graphics processor. The
processor uses the quarter square graphics for a resolution of
50 vertical by 80 horizontal points on the Commodore-64 and 40
column screens, 44 by 46 on the VIC- 20, and 50 by 160 on a
8032. The coordinate system has locations 0,0 at the upper left
corner of the screen. The directions are as follows:

90

180 o

270

When the interpreter is initialized, or turned on, the direction
is set to O.

The command may be one of the following.

CLEAR

COLOR x

- Clear the screen and set the pen coordinates to
0,0 (upper left screen corner) .

- On the VIC-20 and Commodore-64 will set the
turtle pen color to color number x.

DIRECTION - Set the turtle direction between 0 and 359 de­
grees.

DOWN - Lower the drawing pen to enable a line to be
drawn.

DRAW x - Draw a line x units long from the current turtle
position in the current DIRECTION.

ERASE x - Erase a line x units long from the current turtle
position in the current DIRECTION.

GOTO x, Y - Move the turtle coordinates to x, Y •

LEFT x - Adjust the current DIRECTION x degrees to the
turtle's left (or counter-clockwise direction).

p. 98

LOCATE
#x(, #y)

RIGHT x

UP

- Locate the x and (optionally) the y coordinates
of the turtle and transfer them to the PILOT vari­
abIes x and y. It is not required that you use x
and y as variable names.

- Adjust the current DIRECTION x degrees to the
turtle's right (or clockwise direction).

- Raise the drawing pen. When this command is in
effect, the DRAW command will not draw a line and
the ERASE command will not erase a line. The only
effect with the DRAW and ERASE commands will be
that the position of the turtle will be moved as if
the lines had been drawn or erased.

On PILOT startup or initialization the interpreter will set the
pen coordinates to 0,0 and put the pen DOWN and set the
COLOR to o.
The HALT Command H:
The HALT command will stop execution of the PILOT program
so you can examine the program steps OR variables. Type
CONTINUE to restart the program. If you edit a program line,
the CONTINUE command will respond with a

CAN'T CONTINUE

error message. You will then need to restart the program by
typing RUN.

The JUMP Command J: label

The JUMP command jumps to the appropriate label and begins
execution of the program there. There are two labels reserved
for the JUMP Command:

J:@ - Equivalent to typing RUN from the keyboard. It will
restart the program AND clear all variables.

J:? - Jump to the last accept statement.

p. 99

Any other label will be assumed to be a part of the users
program. The search for the label will proceed from the
beginning of the program and continue until all of the
characters in the operand field are matched. This condition can
be met even if the destination label is longer than the one in
the JUMP statement. Thus, the JUMP statement

j :test

will jump to

*test loop t: go jump in the lake

if the label * testloop is the first match found. The computer
will match only the first four characters, even if a later label is

'~test t :Press any key to continue

and is the one you are wanting to match.

Error messages -

If the destination label or the label in the JUMP statement is
longer than 8 characters, then the error message

label - label too long

will be printed. If the label is not found, then the message

label - label not found?

will be printed.

The MATCH Command
M: item 1, item 2, ... , itemn
The MATCH command will match the contents of the answer
field with iteml. If no match is found, then match with item2,
etc. If no match is found, then set the matchflag to n. If a
match is found, then set the matchflag to y.

The items to be matched can also be variables. If the first
character following the colon or following each comma is a
number sign '#' , then the answer field will be matched with the
number.

The literal matches use a sliding window match. That is:
p. 100

test test will match
OR
OR

that was a thorough testing program
uncontestable

The RANDOM NUMBER Command N:X
The RANDOM NUMBER Command generates a random number and transfers that number to the variable x. The number generated will be between 0 and 99.

The PAUSE Command P: nn
The PAUSE Command lets you have a delay at some point in the program for a period of time. The value of nn can be anywhere from 1 to 127. Each increment (from 1 to 2, 2 to 3, etc.) will delay for about .02 seconds. Thus, a delay of 127 will pause
for about 2.7 seconds.

The REMARK Command
R:remarks
The REMARK statement is a convenient way to add comments to your program to help you or others understand what is happening. The interpreter will skip this line when executing a program.

The SC REEN Command S: (options)
The SCREEN command will send various formatting commands to the screen. These commands are:

c - Clear the screen.
dnn - Cursor down nn times (Note 1).
f - Reverse the screen.
g - Switch to uppercase / graphics.
h - Home the cursor.
Inn - Cursor left nn times (Note 1).
n - Switch to lowercase/uppercase.
rnn - Cursor right nn times (Note 1).
snn - Set single or double spacing (Note 2).
unn - Cursor up nn times (Note 1).
v - Set reverse flag.

p. 101

Option unique to the Commodore-64

b x, Y - set screen background, border colors (Note 3).

Option unique to the VIC-20

b x - set screen background & border colors (Note 3).

Option for both the Commodore-64 and VIC-20
onn - set character colors (Note 3).

NOTE 1 - The value nn can either be an integer or a variable,
but it must not be more than 99.

NOTE 2 - The value nn must be either a 1 or 2. Any other
values are ignored. Integer or variable values can
be used.

NOTE 3 - The color numbers must be between 0 and 15
inclusive on the Commocore 64 and 0 to 7 on the VIC - 20.

The TYPE Command T: (output)
The TYPE Command will print on the screen anything following
the colon. If you include any of the following, other items can
be printed as well:

#x - Print the contents of numeric variable x.
$? - Print the contents of the name field.

If you wish to print a # or a $, then precede it with a $. The
line

100 t: you won $$100!

would appear on the screen as

you won $100!

If the last character of the line is a semicolon (;), the
computer will not jump to the next screen line. Rather the next
T: statement will begin printing at the next screen location. If
the semicolon appears in the text of the T: statement, then it
will be printed.

p. 102

The USE Command U: label
The USE Command will transfer control of the program to the
subroutine which has the appropriate label. Subroutines can be
nested to a depth of seven.

When an E : command is encountered, control is returned to the
statement immediately following the USE statement.

Error messages -

In addition to error messages listed under the JUMP statement,
the message

label - use depth exceeded

will be printed, when you pass the maximum of seven nested
subroutines.

The WAIT Command W:
The WAIT Command needs a keystroke from the keyboard
before proceeding to the next command. The options are:

* - Save the keystroke in the answer field. Don't
wait for the keystroke.

$ - Save the result in the answer field. Wait for
the key to be pressed.

? - Save the keystroke in both the answer fields
AND the name field. Wait for the key to be pressed.

<eol> - Don't save the keystroke value. Wait for the key
to be pressed.

p.103

:0:. . ,-

.'

,,':

",
""7".'

0'" •• j • .-: ~';i \

.... , "

. ,
, ,

i,

-L.

~, ' ;'t:'!: ~,,~,~l~:ct

r .• c!{d!i:;~t~>· '::~'~
"'~;;¥';ffh ilL <i

",;'.! ';', <',~h"l

~ ; .

~ -: I " .'

::ihikii:
··:·.{:t:i.::

, '

~~.:, .

", i

~.,..,:

; i,i' :,.,:'fq~< ;;'J': f'(';f:'!;:'~'
.... ' .

·'t:.:

.....

:-:.-:-"

"

(,:;.,.~,

. :.~~:=J '.

, ... " .

'.'

.... ~~:r'
",

.. / .

. ,,~ .'
-.,;.~ "

···."~.k~""';,~;~~m~hK ,'. ".

;t~!~~~f~SW&

APPENDIX B

PREPARING A DISKETTE FOR USE
For the Commodore-64 and VIC-20 place a blank diskette in the drive. Then type

OPEN 1,8,15, "nO: diskname, 10" : CLOSE1

This command will format the diskette and give it whatever name you enter in place of the "diskname" above. The' 10' is the disk identification number. You can use any TWO digit number here. After about two to three minutes, the disk drive will stop running. The diskette will now be ready to store your Vanilla Pilot pro grams.

The same commands can be used with the 4032 and 8032 computers. However, you may find that an alternate command somewhat easier to use. This command is

HEADER "diskname" ,no

This tells the computer to format the diskette and give it whatever name you enter in place of the "diskname". The disk identification number follows the letter i.

When you press the RETURN key, the computer will respond with a question

ARE YOU SURE ?

To . format the diskette you need to press the Y key and then RETURN.

p. 105

p. 106

APPENDIX C
PILOT ERROR MESSAGES

There are a number of error messages that you might see with
the PILOT interpreter. Most of these have been designed to be
virtually completely self explanatory. What follows is a list of
the error messages from PILOT and their possible causes.

EDITOR ERROR MESSAGES
FILE NOT FOUND

FILE ERROR

FILE WRITE ERROR

CAN'T CONTINUE

NOT PILOT
COMMAND

- The requested file was not on the
diskette. Try a different name OR a
different diskette.

- There was an error when at-
tempting to READ a file from the
disk. Usually this means a disk
problem. First try reseating the
diskette. Then clean the disk
heads. Finally, try LOADing from
the backup copy of your diskette.

- There was an error on the disk­
ette while attempting to SAVE a file
on the disk. Try SAVEing on a dif­
ferent diskette, or try some of the
other ideas in the FILE ERROR
message.

- You have attempted to continue
after LOADing a new program, ed­
iting the program in memory, or
pressing the RUN /STOP key while
executing an ACCEPT or WAIT
statement.

- You have attempted to use one of
the BASI C commands which PILOT
does not understand.

p. 107

ZERO INCREMENT

SYNTAX ERROR

- On the CBM or PET (the Com­
modore 64 and the VIC-20 give a
SYNTAX ERROR), you have at­
tempted a RENUMBER command
with an increment of ZERO. This
would give all the program lines the
same number and could confuse the
computer and possibly the pro­
grammer.

- Usually this means that you have
misspelled a command OR have
entered or omitted a required pa­
rameter. When using the Commo­
dore 64 or the VIC-20, this can
also mean the same as the ZERO
IN CREMENT error message.

INTERPRETER ERROR MESSAGES

Most errors in the interpreter and the Turtle Graphics por­
tions of Vanilla Pilot will simply look like this

ERROR - program line

The program line portion of the error message will show the
line STARTING from the point where the error will occur. This
is sometimes given in conjunction with the error messages
below.

label - LABEL NOT
FOUND

label - LABEL TOO
LONG

label - USE DEPTH
EXCEEDED

- A J: label or U: label contains a
label which does not exist in the
program. The label displayed will
be the one the computer couldn't
find.

- You have entered a label longer
than 8 characters. The label dis­
played will be the first eight char­
acters of the label that is too long.

- The program has eight or more
nested subroutines. The displayed
label is the eighth nested subrou­
tine.

p. 108

VALUE < 0

VALUE < -999

VALUE > 999

- A required parameter is less than
zero.

- There was an attempt to enter a
number less than - 999 in an
ACCEPT command.

- There was an attempt to enter a
number greater than 999 in an
ACCEPT command.

OVERFLOW IN - The result of the COMPUTE
CALCULATION command is outside the range of

-999 to 999.

TURTLE GRAPHICS ERROR MESSAGES

TURTLE OFF THE
SCREEN

TURTLE DIRECTION
> 359

ZERO LINE LENGTH

VALUE MISSING

- The DRAW, ERASE or GOTO
subcommand has sent the turtle off
the graphic screen.

- You have entered a DIRECTION
command with the direction speci­
fled as greater than 359 degrees.

- A DRAW or ERASE command was
entered with a value of zero for the
line length.

- You have entered one of the
graphics subcommands without a
parameter.

p. 109

p.110

APPENDIX D

CONTROLLING THE JOYSTICK ON THE
COMMODORE · 64 AND VIC · 20

The joystick and fire button ports on the Commodore- 64 are
read by the Y: and I: commands. These commands are covered
in this appendix.

The JOYSTICK Command - Y:
The JOYSTICK command will permit you to read the direction
registers of the joystick and convert them to Pilot variables.
The format for this command is

Y : port, variable 1 , variable 2

The port is either 1 or 2 depending on which joystick you wish
to read. The variables will contain the current status of the
joystick. The following table will give the values transferred to
variable 1 and variable 2

Direction variable 1 variable 2

center 0 0
up 0 -1
up & right 1 -1
right 1 0
down & right 1 1
down 0 1
down & left -1 1
left -1 0
up & left -1 -1

A typical example of this command would be

Y: 1, #X, #Y

This means to transfer the relative directions for joystick #1.
from the table above, to the variables #X and #Y. Look at this
simple example

p. 111

100 R: SIIvlPLE JOYSTICK DEMO
110 S: C
120 C :Y=12
130 C: X=20
140 *START S:H
150 S:D#Y
160 S:R#X
170 T: *
180 Y:1,#A,#B
190 C:X=X+A
200 C:Y=Y+B
210 J: *START
220 E:

This program would place an asterisk in the center of the
screen. As you move the handle of joystick #1 you will see the
asterisk move about the screen leaving a trail of asterisks
behind it.

VIC-20 Note

The VIC-20 version of the joystick command is identical except
for the port number. As there is only one joystick connection,
you need not specify joystick #1 or #2.

The FIRE BUTTON Command - I:
This command will permit you to check the status of the fire
button on either joystick. The format is

I : port, variable

The port is either a 1 or a 2 depending on which fire button
you wish to read. The variable is anyone of the 26 numeric
variables from Vanilla Pilot.

A typical example of this is:

I:2,#F

This line will read the fire button on joystick #2. The variable
#F will contain a 0 if the button was not pressed. If the button
was pressed, then #F will contain a 1.

Let's expand the JOYSTICK example to provide an example of
how to use the FIRE BUTTON command.

p.112

100 R: SIMPLE JOYSTICK DEMO
110 S: C
115 C:C=O
120 C: Y=12
130 C: X=20
140 *START S:H
150 S :D#Y
160 S :R#X
165 S:O#C
170 T: *
180 Y: 1, #A , #B
190 C:X=X+A
200 C :Y=Y+B
202I:1,#F
205 C:C=C+F
210 J: *START
220 E:

Now when you RUN the program, you will see the asterisk
moving about the screen as directed by the joystick, just as
before. Now, however, pressing the button on the joystick will
change the color of the asterisk. Each time you press the
button the color will increment by 1.

VIC-20 Note

The VIC- 20 version of the fire button command is identical
except for the port number. As there is only one joystick
connection you need not specify fire button #1 or #2.

p.113

QUESTIONNAIRE

We would like your opinion on this program, so that in
future editions it can be improved.

1. Did you find any errors in the
No. If yes, please explain

book? Yes

2. Did you find any errors in the pro gram? Yes
No.

If yes, please explain

3. Was the book written on a level that
understand? Yes No. If no, what

you could
concepts did

you have difficulty understanding?

How could these concepts be explained

4. After working with the examples in the book,
feel confident that you can write programs in
Pilot? Yes No.

better?

do you
Vanilla

5. Do you think that any area of the manual should be
expanded? Yes No. If yes, which area(s)

6. Other comments ---------------------------------

(Optional)
Name
Addr·~e~s~s--

City State
Phone--(~----~)--~

__________ Zip Code __________ __

----- --------------------

-----------~----------Fold Here--------------------------~

D

Tamarack Software
Box 247
Darby, MT. 59829

Welcome to VANILLA PILOT.

V.-\:\,ILLA PILOT is a simple easy-to-learn programming lan­
[2:u[1ge . The commands have meaningful names, making them
e[1sy to learn and remember. Vanilla Pilot has been developed
for teachers to write programs for their students and for
te achers to teach their students. It also is ideal for someone
\Vho wants t o learn programming at home.

V ANILLA PILOT is a versatile lang'uage. It contains a wide
rang'e of program commands with many useful editing state­
ments. Usin g' the Turtle Graphics commands are both easy and
fun. On the Commodore- 64 and VIC- 20, there is the added
dimension of color. Also included are sound and joystick com­
mands .

This manual is planned for both the novice and the more ad­
vance programmer. The first eight chapters are a hands-on
tutorial for the beginning programmer and could easily be used
as a t eachin g guide. Following' the explanation of each program
feature are examples for the user to try . There are numerous
ill ustrations and computer video screens to aid in under­
s t andin g what should be happening.

I f you already know Pilot, there is a section listing the various
commands with an explanation of how each one works.

Tamarack Software
Darby, MT. 59829

