PROITNAL

Public Domain Libraryg
Commodore Disk lumber 1

PDC - 001

Systems Management Associates
3325 Executive Drive, P.0. Box 20025
Raleigh, North Carolina 27619

Contents of Commodore PROMAL Public Domain Disk #1

PLEASE NOTE: All public domain disk materials are contributed works. SMA is
only serving as a clearing house for these materials as a service to our PROMAL
customers. You may copy, use, and further disseminate all Public Tomain Disk
materials as you see fit. All materials are supplied "as is". SMA does not
support these programs in any way. PLEASE DO NOT CALL with questions.

Macro assembler by C. Martens

ASSEM.(S5,C) = the assembler. ASSEM.S also. uses include files
SYM.S, ASSEMTABLES.S, UPSTR.S, EXP.S, GETMODE.S, EQUATE.S,
PSEUDOOP.S, INSTRUCT.S, MACRO.S, CODER.S.

Note: DYNO must be off when running ASSEM.C.

ASSEMDOC.T = documentation

DDUMP.(S,C) = program to dump a file in hex.

BLOAD.(S,C) = program to load object file made by ASSEM.C

EXAMPLE.(A,Z) = example program for ASSEM.C. EXAMPLE.Z is
the object program produced whem EXAMPLE.A is assembled. EXAMPLE.A
also uses include file SYSTEM.M, a collection of macros.

MACROT.(S,C) - learning aid for macros. Explained in ASSEMDOC.T.

EXPT.(S,C) ~ learning aid for expressioms. Explaind in ASSEMDOC.T.

Assembler capabilities include macros, include files, conditional assembly,
arithmetic and boolean expressions. Output file is a PROMAL sequential file
beginning with 2-byte load address, with remaining bytes being the assembled
code. This object file can be loaded by the BLGAD program above, but cannot be
loaded by the PROMAL EXECUTIVE commands, because it does not conform to the
definition of a PROMAL relocatable object module (as described in the RELOCATE
utility couments). It also cannot be loaded with the MLGET function, because
it is not type OBJ (for Apple) or PRG (for Commodore).

However, the RELOCATE utility (om the PROMAL 2.0 END USER DISK) can easily be
modified to convert the Martens’ assembler output to a relocatable PROMAL
module. The following minor changes to the RELOCATE source code are required.
Please save the original version of the source! The lines beginning with
question marks are for conditional compilation. The following modification
works for the Commodore version:

In file RELOCATE.S, in PROC OPEN FILE, replace the lines:

IF MODE <> W”
7A _
HANDLE=OPER(NAME,MODE, TRUE) ; Non-Promal file
" S
7¢
HANDLE=OPEN(NAME,MODE,’P*) ; PRG file
?
ELSE .
HANDLE=OPEN(NAME,MODE) ; PROMAL output file

with the single line:

HANDLE=OPEN(NAME,MODE} ; Open file

Compile your new versiom of RELOCATE. You are now ready to assemble your
program twice with different .ORG statements as described in Appendix I of the
PROMAL manual and use your new RELOCATE on the resulting output files.

PS: If you use Martens’ BLOAD utility instead of making the object code into a
PROMAL module, and you execute the program from the EXECUTIVE with a GO
command, please note that your assembly program MUST save the word at location
50065 (Apple) or $003A (Commodore 64) on entry and restore it before exiting
with an RTS. If you don’t and you call any PROMAL library routines inside your
assembly program, your program will not return to the EXECUTIVE. The same
thing applies if you enter the machine language program by using PROC JSR.

Disassembler by Steve Vermeaulenm

DIS.(S,C) = the program
Disassembles instructions in a specified range of memory addresses. For
example, the executive command "DIS 1000 1400" disassembles memory data within
the given range of addresses. See source file for more usage informationm.

Disk Fizxer program and documentation of disk structures by A. Ryam

DISKFIX.(S,C) The fixer program. It uses the following includes: LIB-
RARY.S, C64 EQUATES.S, JSRDEF.S, GETCHR.S, CSRUPDATE.S,
BUILDSCREEN.S, SCANKEY.S, ADDR.S, EDITCHR.S, EDITEXT.S,
INCHR.S, BLOCK.S, RWBUF.S, FETCH.S, INIT.S, LINK.S, SCTRUPD-
ATE.S, WRITE.S, PUTBUF.S, TERMINATE.S, WINDOW.S, BPRNI.S,
FDJOB.S, FDERR.S, SCTRCHK.S, DSTAT.S, INBUF.S, PRINT.S5, OPN.S

CHANGE.(S,C) Locks/unlocks a file. Execute CHANGE filnam L to lock, and
CHANCE filnam U to unlack. See documentation and commentary

in CHANGE.S.

STAT.(S,C) A program to issue a command to the 1541 disk drive and see
the completion status. See documentation and commentary in
CHANGE.S.

TIME.(S,C) Demo for C64’s real time clock. Initialize it with TIME HH

MM SS. Subsequent TIME executions with no arguments show the
current time as "hh:mm:ss".

Documentation The included hardcopy documentation explains the 1541 disk
structures, how commands are issued to the drive, and how to
use DISKFIX. DISKFIX allows you to display any sector in am
easy-to-recognize format amd to easily make changes.

DISKFIX-Part 1

By A.Rvan

This series of three articles describez the DISKFIX
system that permits you to manipulate data directly at the
track and sector level of the COMMODORE—-1541 Disk drive. The
primary use of this utility is tp repair or rescue data that
has become otherwise unreadable by the 1541 DOS, typically
as a result of an accidental SCRATCH or "~PROMAL DELETE
command. In addition, discs whose files have become
"noisoned" as a result of a variety of circumstances can
often he rescued with careful editing of various data on the
disc.

Since this utility bypasses mozt of the native 1541
DOS, it is extremely powirful, and in unskilled hands is
capable of seriously damaging the data in your files. In
skilled hands haowever, it is possible to retrieve data that
would be considered as totally unrecoverable by any other
means. Thus, in order to ensure that you are in a position
tpo reap the maximum benefit from such a tool, it is
necessary that you understand three pieces of information;-—

C11 How data i=s stored and organised on the discs
C23 How the 1541 is controlled;
£33 How DISKFIX works, and how to use it. .

For this reason this article is divided into 3 sections
covering each of the above areas. :

In this portion, we shall examine how data is stored
and organised on the disc itself. Once the disc has been
formatted, (for sxample, by means of the command: OPEN
15,8,15,"N@: TEST-DISC,ZZ) it consists of 35 concentric rings
or TRACKS numbered from TRACK 1 at the outermost e=dge of the
disc, to TRACK 35 at the centre. Each track is further
sub-divided into segments called SECTORS, and the number of
SECTORS per TRACK vary from 17 at the innermost tracks to 21
at the cutermost. Each SECTOR can contain a maximum of 256
bytes of information. O0f these 256, the first 2 are
reserve. for use by the system, leaving 254 bytes free to
store your data. Table 1 shows the distribution of SECTORS
and TRACKS for the 154%.

TRACK NUMBER SECTORS

1 =—— 17 21
ig —— 24 19
25 —— 30 iB
3L -— 35 17

Table - 1

Page 1

0 1 2 3 4 5 6 7 8 9 1o 11 12 13 14 15 16 17 18
sam{ 1 07 132t e s | 3yofas|aftofae] 5 10 1z] 6]12]i8] fumbeis indicate sector usdge patteérn

Track 18¢ S

1st Directory Sub-block

L A Y "2nd entry
0 1 2 3 & S & 7 8 % to 1t 12 13 14 15 16 f7 18 19 20 21 22 23 24 23 26 27 28 29 30 3i
TRE|SEC|TYPiTRR|SEC| £ |1 | L Jefn]aja] e a TR [8EC|812|$00] $00] $00 oco— - o |t
st entry Forward File name, left justified, _vnﬂ_._nn— with shifted dpaces (3A0). REL Eile fot used. flaed by Humber
only. link usdge only. Waile tavé of
Points to pointer Points to and géctors
mnext Dir. to TAS of peplacd in
block. start of titet side fiie.
Else it file. Bsctor and tength =
is null . tecoid sige. LO+236%H1
e N
Bit:
7 6 5] 3 2 1 0
] o0
Fot used —..:.m<nuuo

000 = DELeted

00! = SEQuential

010 = PRoGram

D11 =USR

1 00 = RELative . . - ;

Directory Track/Sector Map
Lock status: 1 = locked, O =~ open ¥
Figure - 1

Open/close status: | = closed, D = open

5 5 6 1 8 9 10 11

120 141 142 143 1aa

139 160 160 162 163 164 145 166 167 168 169 170 171 255

TR [SEC| FMT | NU

i

DISK HWAME. $SAO|SAD|DISK ID{SAD| 2 | A.|SAD|SAC|SAQ |$AD | NOT UBED = $00

\

ASCITI "A"

Binary weight:

Track . Track #2

Track 1 bit-mdp

Tracks
3-34

Sample entry shown: $14 $D7 $5F $IF

frack #35

$11 $07 sr . s17
ojojo Ljojojo|1l}]1 1{ol1] 0 1 1jojliljoj1 1] 1 1f1jJojo]o]1 t11 1 1
gose 26 8 8 2) 0 = Allocated 1 “ Free
Free sectors = 1641 = 17
Sector mapping { 2 | 6] S} A} 3 1| ofisfadlaaftdftnflof 918 | not used |20 171 16

In this example, sectors 5, 3; 18 and 13 ate ailocated in béack #1

BAM Bit Map Layout
Figutre - 2

L1uo L1=1 *AIWIL »
43vc 9Z-g1 AOWIL »i o
A180 0E-5Z sqoway » o

The reasan for the varying number of sectors per track
is +to minimise the variation in recording density between
the inner and ocuter tracks, in an attempt to increase the
reliability of the drive. Most other disec systems, ie,
APPLE, TANDY, etc, adopt the simpler approach of a constant
number of sectors per track.

To give you some idea of the dimensions with which we
are concerned, on the 1541, at the outermost tracks the bit
density is about 4888 bits/inch whilst on the innermost
tracks it is about 420@ bits/inch. To put it another way,
in the distance represented by the diameter of a human hair,
at the innermast tracks this distance will contain about 8
bits or I byte. You can thus understand that a small piece
of dust, dirt or smear of a fingerprint can obliterate quite
a lot of data!

In order for the Disk Operating System (DOS) to be able
to locate a file of data, there has to be an index of file
names, usually called the DIRECTORY. In addition, there
must also be a “map’ showing which sectors of the disc have
been allocated. In the 1541, this 'map’ is called the BLOCK
AVAILABILITY MAP, and both the BAM and the DIRECTORY are
stored on TRACK 18. :

This track was chosen to minimise the number of head
movements necessary to access any particular file. Track
18, from Table - 1, has a maximum of 19 SECTORS -available.
0f these, Sector @ is reservad for the BAM, whilat Sectors 1
— 8 are available for the DIRECTORY. The organization of
Track — 18 is illuatrated in Figure - 1.

Ignoring for the moment the BAM, each DIRECTORY sector
is divided up into eight 32 byte sections that store a
single entry. Hence, since there are 18 sectors available
for the DIRECTORY, and each sector can hold 8 file records,
the 1541 can have a maximum of 144 files on each disc. ;

For the very first entry in sach sector, bytes @8 and 1
are the FORWARD LINK POINTER to the next sector, (this will
be further explained later) whilst bytes 2 through 31
contain the actual directory data. In the second and
subsequent 32 byte segments, bytes @ - i contain $080. Byte
2 of each directory entry is the FILE TYPE DESCRIPTOR, and
its mapping is alsoc shown on Figure - 1.

Bits 8,1, and 2 of the FILE TYPE DESCRIPTOR are used to
identify the 5 COMMODORE file types. Notice that since 3
bits are allocated for this function, in principle it is
possible to map 8 unique file types. By using the un—mapped
3 codes it is possible to produce a number of bizarre file
types, but in practice these ‘un—-mapped’ types are of little
practical value.

Page 2

0f the remaining S bits in the byte, only bits & and 7
are utilized by DOS. Bit 7 denotes the current status o+
the file; a ‘1’ signifies that the file has been properly
‘closed’, whilst a ‘@' signifies that the file is currently
still open.

Improperly closed files are one of the root causes of
‘poisoned’ discs, and as will be explained later, must be
treated with great care if you are to avoid further
peisaning of the disc.

Bit & is an undocumented feature of the 1541 DOS, and
signifies the LOCK/UNLOCK status of the file. By setting
this bit to & ‘1’ you can prevent DOS from erasing this
file. (A future article will present and explain the PROMAL
source code for 3 routines, LOCK, UNLOCK, and CHANGE that
take advantage of this feature to enable ycu to prevent your
files from being DELETED by PROMAL)

Bytes 5 through 28 are the left Jjustified file name
padded out vith the $A@ Shifted—Space character.

Bvtes 21 through 23 are used in the RELative file
definition, and they will be explained later, for other than
RELATIVE file types, they are 300. Similarly, bits 24
through 27 a-e alsc unused by DOS.

Bytes 28 and 29 are ordinarily set to $0@, but are used
dynamically by the SAVE & REPLACE feature of CBM-DOS Version
2.4 to temporarily store the FORWARD LINK POINTER during the
SAVE portion of the new file data. This data gets
cransferred to its normal location, bytes 3 and 4 of the 32
byte record, at the conclusion of the operation.

Finally, bytes 3@ and 3t are the file length descriptor
word in normal &502 Lo-byte/Hi-byte format.

The FORWARD LINK POINTER is the means by which DOS
links the various sections of a file stored on the disc.
Bytas 3 and & of each: 32 byte #ile record contain this
pointer, byte 3 points to the TRACK where the next segment
of the file is located, whilst byte 4 points to the SECTOR
location. -

This mechanism is used for all the files, and bytes @
and 1 of every sector of actual file data contain these
pointers. When the last sector is written to the disc, byte
@ is set to $2@ to indicate to DOS that this is the last
sector of the file. Remember, TRACKS are numbered from 1 -—
35, thus there is no TRACK 8. The value contained in byte
1, which would ordinarily mean the next sector location, now
indicates the number of valid bytes in this sector, and will
have a value from I to 256.

At this point we can now explain the construction of
i1{he BLOCK AVAILABILITY MAP or BAM. This i= best done

Page 3

pictorially, as shown in Figure - 2. Notice that, as usual,
bytes @ and 1 contain the FORWARD LINK POINTER, in this case
for the DIRECTORY, and will normally point to TRACK 18
SECTOR 1.

Byte 2 contains the DOS format identifier, byte 3 is
unused, whilst bytes 4 through 143 are grouped in 4 byte
records that map the allocation table.

Bytes 144 through 157 contain the left justified disc
name padded out with shifted spaces, bytes 160 and 141 also
contain the $A@ shifted space character.

Bytes 1462 and 163 contain the disc ID characters, byte
164 contain $A@, bytes 1465 and 166 contain "2A", bytes 167
through 172 ceontain $AB, and bytes 171 through are unused,
and contain $@Q.

Thae mapping of the allocation table is quite
straightforward. The first byte of the group of 4, i.= byte
4 of the sector, byte 8, byte 12 etc, contains a value
representing the number of free sectors in the track
represented by the 4 byte group. The remaining 3 bytes
represent a straight bit map of the allocated sectors. (4
‘{’ mmans the sector is free, whilst a '@ means that it is
allocated. It is easier to illustrate than describe, and I
suggest that you study Figure - 2 to gain a clear picture of
the technigues used. Notice that the first 4 byte group
maps TRACK 1, the next 4 byte group. TRACK Z, and sc on.

The only unusual sequence is the sector mapping within
the group. Again, it is much easier to understand from a
picture rather than a textual description, =o please refar
to Figure - 2,

Whilst the mapping of the BAM is interesting from an
academic standpoint, in practice there is very little need
to ‘tinker’ with the data of the bit map. If you need to
re—construct a bit map from a damaged disc, then use DISKFIX
to recover the data, and when leaving DISKFIX select the
‘update BAM' optiom, which will perform this chore for you.

At this point a word of warning is appropriate. If you
use DISKF1IX to rescue a file that was SCRATCHED or DELETED,
then DOS will have de—allocated the sectors from the BaAM,
Unless you force a re—construction, or perform it vourself,
although the file can now be recovered from the disc, the
next WRITE operation will, in all probability, overwrite one
or more of your files sectors, and you will commence to
‘poisan’ the disc again! This point will be covered in more
detail when we get to part 3.

We have already seen that there are only S5 types of
files recognized .by COMMODORE DOS, namely, DELeted, PRoGram,
SEQuential, RELative, and USeR. Of these 5, the PRG and SEQ
are actually the same types of file structures, whilst even

Page 4

the REL type has considerable similarities. The DEL file is
simply a deleted or scratched file, rather than a separate
file type, and retains "~ all the characteristics of its
previous existence. We shall commence therefore with the
most fundamental file type, the sequential file.

In a sequential file, the data you wish to store is
simply laid down, 254 bytes per sector, one sector at a
+time. In order to manipulate this type of file, the entire
file has to be read into the machine, and any modifications
made directly to memory before re-writing the entire file
back to the disc. Since memory manipulations are extremely
rapid in comparison to disc access times, such a file can be
manipul ated quickly. The limitation, however, is that the
file cannot be larger than the available memory, and usually
only a small fraction of the total available memory. This
type of file is usually used for the storage of programs,
text files, and other data that does nct need tc be
retrieved from the disc on an individual record basis.

in the case of the 1541, the FILE TYPE DESCRIPTOR byte
will be set to $81 (SEQ) or $82 (PRG) and the FORWARD LINK
POINTER in bytes 3 and 4 of the 32 byte directory record
will peint to the TRACK and SECTOR that contain the first
sector of the file. At this first sector, and at every
subsequent sector save for the last, bytes @ and 1 will be
the FORWARD LINK POINTER to the next segment of the file.
The last segment will be identified because byte @ will be
$@08, and the contents of byte 1 will represent the number of
valid data bytes in this sector.

I the sequential file in question is actually a
program, (either BASIC or M/L) then the first 2 bytes of the
FILE will contain the load address. Since the first 2 bytes
of the SECTOR will contain the forward link painter, it will
be bytes 2 and 3 of the first sector of the file that will
contain the load address. For example, all normal BASIC
programs will start at $@801, thus byte 2 will contain $a1
and byte 3 will contain $@8, im normal &382 Lo-byte/Hi-byte
faormat.

If the sequential file simply contains data, then byte
2 and 3 of the first sector will contain data.

The next type of file file is the RELATIVE +file, and
its structure is, in reality, only slightly more complex.
The ocbject of using RELATIVE files is twofold:—

o O | To be able to refermnce more data than can be
contained in memorys

£2] Ta be able to access any record within the file.
In order to achieve these pbjectives, the data to be
stored must be organised into fixed length RECORDS, and that

the maximum record length cannot exceed 254 bytes. Each

Page S

record is sub—divided intc FIELDS, and a these are further
sub—divided into CHARACTERS.

In order to be able to access any individual record of
the file, D08 has to know where the record is located on the
dise surface.. This information is contained in the SIDE
SECTOR file created by DOS when the file structure was
originally set up. The SIDE SECTORS are simply a small
sequential file containing a list of TRACK/SECTOR pointers.

If you examine Figure — 1 again, you will observe that
bytes 21 through 23 are reserved for use by RELATIVE files.
Byte 21 contains the TRACK, byte 22 the SECTOR, and these
point to where the first SIDE SECTOR segment is located. As
usual, bytes @ and 1| of this sector will point to the next
and =0 on. Byte 23 contains the record size that was
defined when the file was initially created.

The mapping of the SIDE SECTOR file is:-—

Bytes @ - 1 Faorward Link to next side sector

Byte 2 Number for this side sector
Byte 3 Record Length
Byte 4. - 3 T & S for side sector @
Byte & - 7 T & § for side sector 1

]

:
Byte 14 - 15 T $ S for side sector S
Byte 16 - 17 T & S for data biock 1}
Byte 17 - 18 T % S for data block 2
Byte 254 - 255 T & § for data block 128

As you can see, since there is provision for a max i mum
of & side sectors, and each side sector can refer toc up to
12@ data blocks, the maximum number of sectors that can make
up a file is 720. Note that this does not mean 7208 RECORDS,
but rather 728 SECTORS. Since-a blank disc <an only hold
664 SECTORS, in practice one cannot reach this l1imit. The
maximum number of RECORDS is 45535, and since this implies a
RECORD length of 2 bytes maximum in order to stay within the
bounds of the 163K bytes of disc space, this is also
unlikely to be reached. As a final note concerning REJORD
size, you should make the size equal to i + (number of chars
in a record). This allows for the CR character that
terminates a record.

Records themselves can contain whatever data you
desire, and in order to conserve file space, most files will
concatenate the fields into a record, and separate the
fields when the individual records are read. If you wish to
avoid this, then you can use a +field separator character,
but this will increase the field size, and in addition, this

Page &

separator character may not be used within a field as part

of the data. 1In general, a CR or an ASCII ‘', is the normal
field separator. -

Since the 254 byte maximum limit on RECORD size is only
factored by 1,2,127, or 254, in most cases records will span
sector boundaries. This may well provoke a ‘bug’ in the way
DOS updates records. This bug can be avcided by ALWAYS
positiening the record pointer both BEFORE and AFTER writing
tg a record. If your record sizes are one of the factors,
of which only 127 and 254 are very practical, this bug 1is
not triggered.

This explanation is only a very brief overview of
RELATIVE file fundamentals, sufficient for you to understand
how they are stored on a disc. To cover the subject in
depth would require an article in its own right, and is
really beyond the scope of this tutorial.

This article has attempted to show you how data is
organised on the disc surface. In Part II we shall examine
how the 1541 is controlled from the hardware and software
aspects.

Page 7

DISKFIX-Part 2

in Part I we briefly skimmed over the way data is
stored on the disc, and how the Disc Operating System places
an index onto Track 18 toc enable any file to be recovered.
In this portion we shall examine how the mechanics of file
storage and retrieval are accomplished.

The 1541 is somewhat unique in that it does not use a
conventional VLSI chip for the disc controller functions.
As far as I am aware, only the APPLE disec drive shares this
distinction. Instead of a VLSI Floppy Disc Controller, the
1541 uses a 6502 microprocessor, equipped with 2K of RAM and
16K of ROM firmware to carry out the twin tasks of Serial
Port Communications Processing and Floppy Disc Controller.

These twin tasks are performed on an interrupt driven
time—-shared basis, with interrupts occurring every 18 mSec.
Normally, with the drive - in an idle atate, the
Communications Processor (CP) is active scanning the seriail
port ATN line waiting for requests from the COMMODORE-&4.
Every 1@ mSec, an interrupt generated from a timer in the
Complex Interface Adaptor chip (CIA) will force the &635@2
into the Floppy Disc Controller (FDC) mode. In this mode
the 4582 will scan the TASK LIST looking for a valid task to
perform. If no tasks are currently queued, then control is
returned to the CP.

I+ a task is queued, then this task is performed, and
at the conclusion a return code is put in the job queue
representing the task status.

Let us consider a typical task, that of reading a
sector of data. The DOS will put intc the TASK LIST the job
code for a SEEK of the desired track and sector. At the
next interrupt, the FOC will attempt to execute this task by
first comparing the current read head position with the
target location, and stepping the head in or out the
appropriate number of stepa. When the head has settled, the
search for sync characters commences. Assuming that this
search is successful, the TRACK ID will be read. This 1D,
which is written during formatting, will contain the track
number. If this number agrees with the desired track, then
this fact is reported to DOS. If the number is not correct,
then the difference between the actual and the desired
position is used as the new step increment, and the head is
moved again. In general, a SEEK will succeed on the first
attempt. Then a READ job will be placed in the TASK LIST
and the appropriate sector 1D will be sought. I+ +this
search is successful, the data following the sector header
will be read into a buffer area in RAM for processing by the
CP.

Page 1

This description is necessarily very brief, and does
not take into account the many errors that can occur, but is
sufficient for our immediate needs. The main point to grasp
iz that the ‘servo-mechanism’ of head positioning is
essentially critically dependent upon the correct formatting
of the disc. Unlike larger hard disc drives, the head 1is
absolutely positicned on the disc surface. This means that
it relies on the accuracy of the stepping motor to ensure
that when the head is requested to be positioned over (say)
track S, that it is exactly over the track concerned. To
show that it has arrived, the track is witten during
formatting with a track and sector ID code so that by merealy
reading this header the operating system can confirm that
the head is positioned over the correct track. The stepping
motor can step the head in 1/2 track increments, and it is
one of the error re—try procedures to move the head 1/2
track from its present location and attempt +to read the
track again to attempt a recovery.

Before you leap for joy and think that by positioning
the head in half track steps you can double the capacity of
your drives, let me say that the width of the read/write
head is rather wider that 1/2 track to ensure that
sufficient overlap exists to take into account stepper motor
positioning tolerances. Thus any attempt to write to every
1/2 track will ensure that when the head is positioned it
will read a portion of the desired track and a portion of
the adjacent track, thus thoaroughly confusing the read
glectronics. '

So far I have given you the essential ‘flavour’ of the
task= needed to satisfactorily read/write data. To go into
the full detail is quite beyond an article of this nature,
and regrettably, must be left for another day. I shall
continue with a discussion of the nature of the RAM buffers
and how they are used.

1 have mentioned that the FDC scans the TASK LIST
looking for a job to perform, this TASK LIST is an area of
the &S@2 RAM, and has asscociated with it a dedicated buffer
area for mach of the 5 usable positions in the TASK LIST.
Table - I identifies the major locations and associated
buffer areas.

TASK LIST BUFFER ADDRESS TRACK ADDRESS SECTOR A OJRESS

$220a 2 $A3298-s$a3FF $AA05 $98Qa7

$0001 1 $@400-$B4FF $00a8 $00@9

*$@aaz2 ‘2 $0500-$aSFF $200A +00aB

$20083 I $05L8D~-SALFF $00aC 020D

3204 4 $A7Q00-$07FF $A0AE $AAAF

$A08S = NGO RAM 0910 0011
TABLE - 1

Thus, if the job code for a SEEK is placed in $0808, the

Page 2

track number placed in $@8@8&, the sector number in 0007,
when the head has settled, and after a READ code has been
placed in $008@, the data will be placed in buffer #@, from
$@3@0 to $GIFF.

Table - 2 lists the appropriate job codes.

JOB CODE FUNCTION
$8@ READ
$9Q WRITE
$A@ VERIFY
$BA SEEK
$Ca BUMP
D@ JumMP
SE@ EXECUTE

TABLE - 2

After the tasks have been axecnted, the return code
replaces the original. job code, and Table - 3 identifies
the meanings.

RETURN CODE MEANING ERROR CHANNEL CODE
@1 aK oK -
*@2 READ ERROR, Header block missing . . 20
$83 READ ERROR, No-sync character Z:
34 READ ERROR, No data block 22
%25 READ ERROR, Data checksum error 23
$@7 NRITE ERROR 25
@28 WRITE PROTECTEDR: 26
$A9 READ ERROR, Header checksum error 27
3B READ ERROR, Disc ID mismatch 29

TABLE - 3

With the above knowledge, we are equipped to take control
af the 154t FDC directly.

In order to read and write to the 1541 directly, we need to
open a DIRECT ACCESS channel to the drive. This is
performed in BASIC by means of the statement:

BPEN. file#, device#, channel#, "#*

To pass data to the 1541 via this diresct access path, in
BASIC one wauld use the form:

PRINT #15, direct access function code, channe.#, drived,
track, sector

Page 3

Ui

B-PF
uz

M-R
M—W
B-4
B~F
M-E
B-E

Tﬁe function codes that may be used are:

BLOCK READ, read a data block into 1541 RAM

BUFFER POINTER, position pointer to any byte in 1541 RAM buf+fe

BLOCK WRITE, write contents of 13541 RAM buffer to disc
MEMORY READ, transfer contents of 1541 memory to C-64
MEMORY WRITE, write tc 1541 RAM

BLOCK ALLOCATE, set bit in BAM bit—-map to put sector in-—use

BLOCK FREE, reset bit in BAM bit-map to free sector
MEMORY EXECUTE, execute code in 1541 RAM/ROM
BLOCK EXECUTE, transfer code from disc and execute

Table - 4

At this point I propose to clarify the actual mechaniam
used within the COMMODORE operating system to exchange data
with a peripheral device. It would seem that there is a
certain amount of confusion in this matter, and neither the
154 Users Manual nor any of the other ancillary
documentation makes any attempt to clarify the subject.

A= shown above, to open a direct access channel to the
peripheral we use (in BASIC) a statement of the form:

OPEN file#,device#,channel#,filestring

Regrettably, the ‘file#’ does not refer to a file, and the
‘channel®’ does not strictly refer to a channel either! No
wonder there is a great deal of confusion. It becomes even
more confusing when we use machine-code to perform this
chore, for, as we shall see in the final part, some of the
syntactical conventions we used in BASIC simply do not worh
in M/C. Thus it i= high time to put matters straight and
explain once and for all how this file handling mechanism
works.

Perhaps the best way of visualizing what is taking place is
by means of a simple diagram. Consider Figure - 1

1541
device #8

c-&4 | file #2 chan #3 |

OFPEN 2, B, 3, "#"
Figure — 1
In fact, what Commodore refers to as a 'filed’' is actually
a 256 byte buffer in RAM, as is the channel#, in thizs case
in the 1541 RAM. The numbers in the 'OPEN" statement are
simply your logical numerical labels, and may be chosen to

Page 4

suit your purposes. In the statement in Figure — 1, we are

simply saying "Open a Direct Access path (tne "#° symbol)
to Device #8, using logical buffer #2 in the C-64, and
logicsl buffer #3 in the disc drive." To place data in

these buffers involves commanding the disc drive to REFfD a
TRACK/SECTOR, and this can be achieved by means of the ‘Ul’
command.

Remember that Channel #15 is the path by which commands are
given to the disc drive, thus te place the data of TRACK
18/SECTOR §{ into this already defined buffer, we execute:—

PRINT #15,comsandstringjchannel#;deviced;track#;sector#
or, filling in the blanks;
PRINT #15,"Ut"33;8318;51

After this command has executed, the ceontents of T-18/5-1
will be in logical buffer #3 in the 1541 RAM. To felch the
data into the C-44 RAM, we can use aither INPUT # or GET #.
Since INPUT # will interpret certain characters as
delimiters, and, in general, we cannot prevent these
characters from being present, we must use GET #, which can
accept any character, including NULL.

Thus, to complete the illustration, we would execute:-

FOR I=@& TO 235

GET #2,Z%:1IF Z$="" THEN ZIS~CHRS(3)
DATAS=DATAS+IS

NEXT I

The point to grasp is that whilst we usually make the filed#
and the channel# the same value, there is no logical reason
to do so. Indeed, if we ever get involved with devices
such as plotters, then we may well have to come to grips
with having a number of files open with channel numbers (or
secondary address, which amount to the same thing) that are
not the same as the logical file#.

It is also important to grasp that the Ffile#/channel# are
actual areas of RAM, and can be referred to directly, if
necessary. As shown sarlier, there is a fixed relationship
between the TASK LIST and its associated buffer. The
number of the buffer is not the same as the logical number
that you assign, but simply the order in which DOS will
assign these buffers as you open mor~- paths to the disc.

The OPEN statement bas two other peculiarities that are
worth mentioning. The first concerns the use of "file
nunbers” greater than 127. The 1541 DOS wmanual indicates
{an page 14) that file numbers higher than 127 will cause a
LF to be sent after a CR. This is a throw-back to the days
when TELETYPES were used as the console device, and a
NEWLINE function had to be implemented with the CR+LF

Page S

combination. The point toc note is that +this additional
character will only be added at the end of & line of data
that is being sent to a sequential or relative file that is
being written to the disc, it will not be sent on the
serial bus to a device such as the printer. Thus, in
general, one =hould avoid using file numbers greater than
127.

The second peculiarity concerns the ‘filestring’. This
descriptor is used for a2 wide range of tasks, a,d it is not
surprising that the range of meanings asspciated with it is
very large. In the case of a Direct Access path, if the
filestring descriptor is "#" then it signifies to DOS to
"yse the next available buffer”. If you wish to force DOS
to use a particular buffer, then.use the form "#n" where
‘m’ can be from @ to 4. In this case you will force DOS to
choose a specific area in RAM in which to place your data.
If this is the first path you have opened to the disc, .you
have free cheoice, but if you have already opened a path,
then youwr choice of buffer areas are restrictod. I+ the
desired buffer is already in use, DOS will return an error
message via Channel #1535, “7@ NO CHANNEL"

To get round this error, simply start at '@’ and increment
until no error is returned from the Command/Status Channel.

In the final part of this series,. we shall examine the
subtleties of using the KERNAL ROM routines te open direct
acce=s paths, and will explore the use of the major 1I/C
routines. In addition, we shall explain the operation and
use of DISKFIX.

Page &

DISKFIX - Part 3

In this, the final part of the DISKFIX saga, I propose
to show how to use some of the fundamental KERNAL ROM
routines, as well as eaxplaining the use of the DISKFIX
program. DISKFIX makes considerable use of the PROMAL JSR
function to access the KERNAL I/0 routines, - and thus vyou
should be familiar with the use of this important function
prior to attempting to understand the following explanation.
Since this is more than adeguately covered in the PROMAL
users guide, it will not be replicated here. Table 1 lists
the KERNAL ROM routines used by DISKFIX.

ADDRESS FUNCTION
CHEKIN FFFCS Switch INPUT channel to file #.
CHKOUT SFFC? Switch OUTPUT channel to file#.
CHROUT SFFD2 General Character output routine.
CHRIM $FFCF General Character input routine.
CLRCHN $FFCC Reset I/0 switch to KB and SERN.
Jable — 1

At this point, it is appropriate to explain the way in which
I/0 is controlled in the COMMODORE-&4. When the machine is
first powered up, the input is expected from the keyboard,
whilat output is expected to go to the screen. To alter
+this source/destination, involves "switching” the input or
output to a designated channel. The computer can only input
or output data from/tc a single source/destination at a
time, and in this respect, is analogous to a stereo system.
In a stereo system, there is an input switch to select the
source of input from phono, tape, radio etc, as well as a
loudspeaker switch to send the output the A speakers, the B
speakers etc. In the sterec system these input and output
switches are operated manually, whilst in the computer, the
"switches” are set or reset via software. Switching the
input or output is performed by first OPENING a channel, and
then using CHKIN to switch the input from the keyboard to
the channel, or alternatively, using CHKOUT to switch the
nutput to the channel. To reset the input and cutput to the
keyhoard/screen, the CLRCHN routine is used,

Since DISKFIX performs all its 1/0 via the Error/Status
Channel, #15, and since this channel is always open in
PROMAL, there is no requirement to open this channel
explicitly. Thus, in DISKFIX, it is only necessary to
switch the input or output as required to get or send data
from/to the disc drive. In order to switch input from the
keyboard, the CHKIN routine has to be called with the
machine X register set to the logical file number, in this
case, #15. To switch output, the CHKOUT routine has to be
wsed, again with the X register set to the 1logical file

Page 1

number, #1S.

To restore the normal keyboard/screen settings, the CLRCHN
routine has to be called. In this case, no registers need
to be preset. Note that it is possible to restore the input
to the keyboard by calling CHKIN with the X register set to
$08, and smimilarly, the output may be reset to the screen by
calling CHKOUT with the X register set to #@3. Since CLRCHN
performs these chores in a single step, it is usually more
convenient to use this routine.

It is important to note that it is advisable to reset the
input and output settings after each input or output
operation, even if the same channel is to be used again. It
was found during the developement of the DISKFIX program
that if this was not done, then seguential access to the
disc drive would not necessarily behave as expected.
Similarly, it was found that the syntax of the commands sent
to the disc via the direct use of the KERNAL routines was
critizal. I+ you examine the 1541 Users Handbook, you will
find -hat there are alternative forms of many of the direct
acces ; commands. For sxample, the Ul command to read a
speci fic track and sector is shown as having the form {in
BASIC. of=—

PRINT #15,"U1"3;2;@3168;0

However, i the command is to be sent as a string of
characters, then the semi-colon field delimiter ";" is
unacceptable., The only acceptable delimiters are the comma,
"." or the space. Hence if you wish to send the above
command as a string, in BASIC you would have to write:-

Ce="Ut,2,8,18,8"
PRINT #15,CS

ar,

Cem"yl 2 @ 18 2"
PRINT #13.C$

This is also true if you wish to use machine language or the
PROMAL. JSR function. In this case a "COMMAND-BUFFER"” will
have to be defined, and the =tring ot characters
"wi,2,0,18,8" placed in the buffer with the MOVSTR
procedure. '

Page 2

Thus, to emulate the BASIC code, the following PROMAL
fragment would need to be executed:-—

MOVSTR “"U1,2,8,18,8" ,CMDBUF sset up command buffer

LENGTH=LENSTR (CMDBUF) jget length of command string
POINTER=CMDBUF jget pointer toc command string
JSR CHKOUT ,@,15 sswitch ocutput to Channel #15
FOR I=@ TO LENGTH-1

JSR CHROUT , (PODINTER+I) &< soutput characters
JSR CLRCHN sresat 1/0.

NB. The code above is not meant to be a stylistic example of
the "best" way to achieve the desired action, but rather as
an example of the various process that need to be performed
and the order of their execution. Obviously, it is possible
+o economise by combining several operations.

Similarly, it was found that the direct access command "M—-R"
would mis-Behave if the alternate form was used. The usual
form of this command is:-—

M-R CHR$(lo~byte) CHR$(hi-bytwe) CHRS (number of bytes)
_However , the altasrnate forms-—
"M—R:z* CHRS(lo-bytw) CHR$(hi—bytms) CHRS$ (number of bytes)

is sometimes used. The presence of the colon "1" after the
command has been found to cause problems — since it is not
required, leave it out. As an example, examine the code for
the FETCH module to see how direct access commands may be
farmatted.

Finally, we can now examine the DISKFIX program itself. fat=?
you will see from the source file, the actual program is
extremely compact:-

BEBIN
BORDER=6&
SCREEN=3
SWHITCH=$17
PUT-CLR
BUILDSCREEN
INIT
REPEAT
SCANKEY
UNTIL KEYCODE=FB8.
TERMINATE
END

The praogram is built from 24 modules, plus the standard
LIBRARY functions. Each of these modules consists of only a
few lines of code, and performs a single sigple function.
For sxample, the function ADDR containz= only a single line
of code, whilst the longest module, the procedure WINDOW,
contains only 44 actual lines of code representing 12

Page 3

choices of screen update data, sach choice being no more

than 4 1lines of code. This structure illustrates the
modul arity of PROMAL programs, and shows clearly how easy it
iz to construct functicnally complex programs from

individually simple modules.

When the program is executed, you will be presented with a
display screen showing the contents of Track 18 Sector L.
This is the first directory sector, and is usually the first
place toc start. Notice that the display window at the top
of the screen has been optimised to reveal the organisation
of the directory. Hence, it is very easy to see at a glance
the file names, forward link pointers, file type
descriptors, and file length data.

Depressing the "+" key will cause the next sector to be
displayed. If the current sector is already the last wvalid
sector, the count will "wrap—around” to the first sector,
#@. Similarly, if the "-" key is depressed, the previous
sector will be displayed. Again, sector wrap-around will
occur if you are already at sector @, and the highest
numbered sector for the particular track where vyou are
located will be displayed.

Depressing the Fi key will cause the sector pointed to by
the forward link pointer bytes to be displayed, and the
track and sector windows to be updated, as well as the 1link
byte display. If the current sector is the last in the
file, depressing the F1 key will cause the END-OF-FILE
warning message to be displayed.

Depressing the F2 key allows you to select the track and
sector to be displayed. The display window will be
highlighted in reverse video, and hitting RETURN will cause
the next window to be selected or the entry completed.

The cursor keys behave as expected, and allow the cursor to
be positioned anywhere in the display window. Notice that
the number displayed in the CSR window represents the
position of the cursor in the 254 byte sector. [f the F3
key is depressed, the character under the cursor —may be
edited. Simply enter the decimal number desired, or hit
RETURN and enter the desired hexadecimal number. This
fmature is useful for changing the file type descriptor byte
for sxample to "unscratch” a deleted file. Notice that the
cursor dees not move after a character update.

Depressing F& switches you to the EDIT TEXT mode. In this
mode alpha-hetic characters may be entered, and the cursor
will move to the next character. The cursor keys operate
normally allowing multiple corrections to be made.
Normally, upper case characters are entered in this mode,
Depressing the SHIFT key allows the lower case characters to
be used. The EDIT TEXT mode is useful for maodifying the
name of a directory entry for example.

Page 4

The FS5 key is probably the most dangerous key of all. This
key allows you to re-write the currently displayed sector
data back to the disc. Normally the data would be. edited,
and then re-written back to its original location.

However, if the F2 key is depressed, it is possible to move
the data to another lecation on the disc. In order to allow
an escape, note that a warning prompt is given, and any
entry other than F2 or "Y" will cause thie mode to abort.
After depressing F2, FS must be re-selected to re-write the
data.

Since DISKFIX does not use the DOS, it i= possible to write
to discs that have had the disec DOS ID changed. Mormally,
byte 2 of the BaAM contains the ASCII "A" character to
signify that this is a 1541 disc. If this character is
changed then the DOS is unable to write to the disc, and the
error message DOS MISMATCH is displayed. Some disc
protection schemes deliberately alter this byte to
"write—protect” the disc. DISKFIX will ignore this error,
and allow this byte to be changed at will and to write to a
dise that is otherwise incapable of being written to.

Similarly, since DISKFIX makes no checks of the BAM, it will
allow you to read a sector from one disc, to remove the disc
from the drive and replace it with another, and to write to
the second disc. Be careful! This tool can rescue badly
"poisoned” discs, but with only a moments carelessness can
also cause considerable damage. Practice on a sacrificial
disc before using in anger!

Depressing the F8 key will allow you to exit from DISKFIX.
A prompt is displayed asking whether you wish to update the
BAM or not. If you have done anything to alter the number
or mapping of the used sectors, then you should update. For
example, if you have used DISKFIX +to recover a acratched
program, then the BAM must be updated to prevent the DOS
from over-writing the recoverad file. The updating is
performed by using the DOS “VALIDATE" command, and this will
read every file on the disc and allocate sectors in the BAM
according to the contents of each file. This process can be
quite time consuming, so be prepared to wait for several
minutes with a full disc.

If you chaoose not to update the BAM then DISKFIX will exit
after initialising the drive. During the develcpement
process it was found that if the drive was not iuitialised
then a strange illegal error message could be provoked from
the 1541, This usually occurred if discs had been swapped
and is presumed to. occur as a result of an internal
inconsistency between the BAM in the 1541 RAM and that on
the disc. Initialisation proved to be the complete cure.

Finally, feel free to copy and distribute DISKFIX. I have

placed it in the public domain in the hope that it will
prove to be a useful and instructive tool.

Page S

PROITIAL

Public Domain Library
Commaodore Disk lumber 2

PDC - 002

Systems Management Associates
3325 Executive Drive, P.O. Box 20025
Raleigh, North Carolina 27619

Contents of Commodore PROMAL Public Domain Disk #2

PLEASE NOTE: All public domain disk materials are contributed works. SMA is
only serving as a clearing house for these materials as a service to our PROMAL
customers. You may copy, use, and further dissemipate all Public Domain Disk
materials as you see fit. All materials are supplied "as is". SMA does not
support these programs in any way. PLEASE DO NOT CALL with questions.

Screen creator by Rev. Mike Cargill
SCREEN.(S,C) = program to create
GET SCREEN.S = procedure for reading the created screens.
SCREEN.T = documentation

A help screen or the like can be created and stored as a disk file. The
displaying program {which you write) can read the screens using the procedure
in GET_SCREEN.

Printer control issuer by Julia Christianson
PRINT1.{S,C) = the program
PRINT1.T = documentation

This demo allows various printer control characters to be issued to the
printer, one at a time, from the keybcard.

PROMAL source file lister by Garth Ingram
PRINT2.{S,C) = the program
PRINT2 DOC.D = documentation

Prints with page headings. Also, controls can be imbedded in the source code
(they look like comments) to eject to a new page and suppress and resume
printing.

Document Formatter by David Long
DOCFOR.(8,C) = the program. Also include files DOCFOR!.S, DOCFORZ.S.
DOCFOR] .T, DOCFOR2.T, DOCFOR3.T = documentation, in DOCFCOR input file
format. A printed copy of this document is also included.

The document formatter provides a means of word processing in which an input
file is prepared with formatting commands imbedded in the text. The input file
is fed into the document formatter, which acts upon the commands and produces
an output file that is ready for printing.

Screen creator by W. A. Marsh
CONSTRUCT.(S5,C) = the program

Same purpose as previously described screen creator. This one supports color
screens, the "price'" being that a screen definition requires a larger number of
bytes. Consult the source code for usage information,

Graphics routines and demo by Roger Norrod
GRAPHLIB 2.8 = an include file having the graphics routines
GRDEMO.{S,C) = demo program (includes GRAPHLIB 2.85)
GRLIB DOC.S = documentation, -

These routines support the high-res screen. Drawing 1is done primarily by
specifying pen moves (draw, erase, complement and '"pen up'"). ASCII characters
can alsc be generated. A screen can be stored on disk and later recalled. The:
demo program gives a tour through- the features. NOTE: this package does not
use the PROMAL Graphics Toolbox, nor is it compatible with it or supported in
any way by SMA. You may wish to study the PROMAL Graphics Toolbox before
committing to a particular graphics package.

Lister that includes time and date stamp by Michael T. Veach
PR.(S5,C) = lister program
SET TIME.(S,C) = sets date and time
PPDL.T = documentation

First, a timer is initialized using SET TIME (and also a date entered).
Thereafter when PR is run, the date and time is printed at the top of each
page.

C64-to-Tandy PC2 data exchange program by Steve Vermeulen
PC2.(S,C} = the program

Files can be passed between these two computers over an R5-232 bus. The Tandy
PC2 is identical to the Sharp PC-1500.

“Dumb terminal™ emulation routine and demo by Steve Vermeulen
DUMBTERM.S = the emulation routine, an include file
DEMOTERM.(S,C) = demo using DUMBTERM.S

DUMBTERM.S is an address-independent machine language routine coded as a PROMAL
DATA statement. DEMOTERM.C has been used to transfer data from a Cé4 to a
Harris 800 computer.

KOALA touchpad support by Erik Vigmostad
KOALA.(S,C) = the program

A design on the screen is constructed under control of the KOALA touchpad.

Counter of word occurrances in a file by Erik Vigmostad
COUNT.(5,C) = the program

The input to this program is a file containing words, such as a text or PROMAL
source code. The output is a list of each different word found along with the
number of times it cccurred.

File Lister for RS5-232 printer by Erik Vigmostad
PRINT3.(5,C) = the program.
RS 232.8 = include file for PRINT3.S.

A convenience for PROMAL users with RS=-232 printers. Without a program such as
this one, it is necessary to exit PROMAL and use a BASIC program to do file
printing.

DOCFOR - A PROMAL Document Formatter
by David Loag

Notes from SMA

This document formatter program is a PROMAL implementation of a design
similiar to one given in Software Tools in Pascal by Kermighan and
Plauger, published by Addison-Wesley, 198l.

DOCFOR is a public domain program submitted by a user. You can freely
use and copy it. SMA serves only as a clearing house for such programs,

and SMA in no way stands behind their correctness, nor does SMA provide
support for them.

You may need to modify the primnter part for your particular printer
before doing underlining. See instructioms in DOCFOR.S§. The presently
implemented method of printing underlines consists of printing a BS and
* _’ sequence after each character to be underlined. This works on many
printers.

The files associated with this program (found on Public Domain Disk #2)
are.

DOCFOR.S Source file for main program. It uses include files
DOCFOR1.5 and DOCFOR2.5

DOCFOR.G Executable version of the program.
DOCFOR1.T Documentation. These three files, when fed into DOCFOR,

DOCFOR2.T produce a document identical to the ome you are looking
DOCFOR3.T at. They illustrate the use of DOCFOR.

INTRODUCTION

This program offers a powerful and well established method of word
processing that begins with a manually created file containing text
intermizxed with formatting commands. The manually created file, which
makes no-pretense of looking like the final document, is fed into the
document formatter pragram, which acts upon the commands and produces an
output file that is in final form for printing.

A major advantage of this approach is simplicity. The input file cam be
created on just about any editor, the PROMAL EDITor being an excellent
candidate. Formatting commands are short sequences of "ordinary"
characters that are always visible., There is nothing hidden from view.
The formatting coumands perform the following general functions:

Packing words together to form complete lines

Producing text with flush left and right margine

Centering text om a line

Creating headers and footers, which may include a page number.

* % ¥ ¥

USING THE FORMATTER

After creating an input file, start the formatter from the EXECUTIVE by

DOCFOR ; Page 1 PROMAL Document Formatter

typing

DOCFOR input_file [output_file]
where input_file is the name of the file to be formatted and output_file
is the name of the file to receive the formatted text. If input_£file
has no extension, a default extension of .T is assumed. If output_file
is not specified, it is taken to be input_file with a .F extension. If

output_file is specified but has no extenmsion, the .F extension 1is
assumed.

For example,
DOCFOR ESSAY
formats the file ESSAY.T and sends the output to ESSAY.F. The command
DOCFOR REPORT MEMO.T
processes REPORT.T and creates MEMO.T. Frequently you will wish to
output directly to the printer. That can be dome by specifying output
to "P", which in PROMAL is the priater device. For example,

FORMAT TEXT.S P

formats TEXT.S and priants the result.

FORMATTING COMMANDS

The formatting commands are placed amongst the text in the input file to
control how the text will look in the fimal document. Each command is
immediately preceeded by a period and starts at the beginning of a line
that contains nothing but the command and its operands. Any line
beginning with a periad is interpreted as a command.

Many coumands take an argument of some form. An argument is any text
following a command and seperated from it by at least one space. There
are three types of arguments: absclute numbers, relative numbers, and
text. Absolute numbers are denoted by &n unsigned integer, and are used
to set parameters to s specific value. Relative numbers are integers
preceded by a + or @ -, and are used to change a parameter relative to
its current valoe. If am argument is not in either of these classes, it
is considered to be text.

For example, the command
+RM 65
sets the right margin to a value of 65. The command
o« TM=-]
repositions the top margin one line above what it formerly was. The

command

PROMAL Document Formatter Page 2 DOCFOR

.EF /January Report/ZZZ, Inc./New Products/

defines a page footer for even-numbered pages.

PAGE LAYOQUT

Vertically, each page has seven regions: the header margin, the header,
the top margin, the page body, the bottom margin, the footer, and the
footer margin. The header margin separates the header from the top of
the page. Similarly, the footer margin separates the footer from the
bottom of the page. The top and bottom margins separate the page body
from the header and footer.

Horizontally, all text is indented to the left margia, and all text ends
before the right margin.

Here is an illustration:

Left margin Right margin
v ‘ v _
¢~ Top of page
{- Header margin
Page 14 Learning PROMAL SMA, Inc. (- Header

i <~ Top margin
The CHOOSE statment is a caonvenient way ¢~ Page body

- &

When the number of iterations is known

¢~ Bottom margin
(C) 1985 SMA, Inec. {- Footer
{- Footer margin

...... —— {- Battom of page

SUMMARY OF COMMANDS

.FI Fill (default)

«NF Stop £illing

«JU Justify (default)

«NJ Stop justifying

+CE Center \

-NC Stop centering (default)

.UL Underline

«NU Stop underlining (default)

+IN n Indent (set left margin to) n (default Q)
+.TL n Indent an additiomal n on next line (default 5)
«BM n Set right margin to n (default 60)

«.TM n Set top margin to n {(default 2)

«BM n Set header margin to n (default 2)

.BM n Set bottom margin to n (default 2)

DOCFOR Page 3 PROMAL Document Formatter

Set footer margin to n (default 2)

+FM n

.PL n Set page length to n (default 66)

LS n Set line spacing to n (default 1, single space)
.SP n Skip n lines (default 1)

.0 /1t/mt/rt/ Set odd header to text
.OF /1t/mt/rt/ Set odd footer to text
.ER /lt/mt/rt/ Set even header to text
.EF /1t/mt/rt/ Set even footer to text

«BR Break (start new line)

.BP n Begin page number n (default +1)

.CP n New page if less tham n lines left (default 1)
LI n Emit literal character n (no default)

DETAILED DESCRIPTION OF COMMANDS

The fill text command causes the formatter to collect' as many words as
possible on each output line, i.e., words will be taken from the input
lines as needed to form an output line which is as lomg as possible
(without exceeding the margins). Pilliag defaults to "on".

For example,

+F1

The quick brown fox

jumped over

the lazy dogs.

A bird in the hand is worth two
in the bush.

produces

The quick brown fox jumped over the lazy dogs. A bird in the hand
is worth two in the bush.

.NF - Stop Filling

The stop filling command causes the formatter to priat each output line
with only the words on the correspondinmg imnput line. No words will be
moved off of or onto the line to make it fit the margins.

For example,

+F1

The quick brown fox

jumped over

the lazy dogs.

.NF

A bird in the hand is worth two
in the bush.

PROMAL Document Formatter Page & DOCFOR

produces

The quick brown fox jumped over the lazy dogs.
A bird in the hand is worth two
in the bush.

«JU = Justify Text

The justify text command causes the formatter to insert blanks in a line
in order to make a flush right margin. Justification defaults to omn.

For example,

«FL

«JU ‘

The quick brown fox

jumped over the

lazy dogs. A bird im the

hand is worth two

in the bush.

Now is the time for all

good men o come to the aid of

their country.

We the people, in order to form

a more perfect union, establish

justice, insure domestic tramnquility,
provide for the common defence, promote the
general welfare, and secure the blessings of
liberty, to ocurselves and our posterity, do
ordain and establish this comustitution for the
United States of America.

produces

The quick brown fox jumped over the lazy dogs. A bird in the
hand is worth two in the bush. Now is the time for all good
men to come toc the aid of their country. We the people, in
order to form a more perfect umion, establish justice, insure
domesatic tranquility, provide for the common defemse, promote -
the general welfare, and secure our posterity, do ordain and
establish this constitution £or the United States of America.

+NJ - Stop Justifying

When justication is turned off, the formatter will not insert spaces in
order to make a line flush with the right margin. For example,

IEI

«NJ

The quick brown fox
jumped over the

lazy dogs. A bird in the
hand ia worth two

DOCFOR Page 5 PROMAL Document Formatter

-

in the bush.

Now is the time for all

good men to come to the aid of

their country. :

We the people, in order to form

a more perfect union, establish

justice, insure domestic tranquility,
provide for the common defence, promote the
general welfare, and secure the blessings of
liberty, to ourselves and our posterity, do
ordain and establish this constitution for the
Umited States of America.

praoduces

The quick brown fox jumped over the lazy dogs. A bird in the
hand is worth two in the bush. Now is the time for all good
men to come to the aid of their coumtry. We th: people, in
order to form a more perfect uniom, establish justice, insure
domestic tranquility, provide for the common defense, promoie
the general welfare, and secure our posterity, do ordaia anc
establish this constitution for the United States of America.

+CE = Center Texzt

The center text command causes the following lines to be centered om &
page. During centeriag, justification amd filling are turmned off. '
Centering defaults to off.

For example,

+CE
January Report -
ZZZ, Inc.

produces

January Report
ZZZ, Inc.

+NC - Stop Centering

The stop centering command turns off centering of text. Previous
justification and filling settings sre restored.

For example,
«CE
January Report
ZZZ, Inc.
- NC

During the fourth quarter of last year,
sales were at a record high.

PROMAL Document Formatter Page 6

produces

" January Report
ZZZ Inc.

During the fourth quarter of last year, sales were at a record
high.

.UL - Underline Text

The underline text command causes the following text (but not headers or
footers) to be underlined. Underlining is accomplished by printing anmn
underscore, a backspace, and then the character to be underlined.
Underlining defaults to off.

For example,

+ UL
This text is underlined.

produces

This text 53 underlined.

«NU - Stop Underlinini

The stop underlining command turms off underlining. For example,

«FIL

.UL

This text is underlined,
« NU

but this isn’t.

produces

This text is underlined, but this isn't.

sIN o - Indent, or Set Left Margin

The indent command sets the left margin for a’l text. If n is an
absolute number, the margin ~ill be set to that value. If n is
relative, the margin will be moved by o from its present positioa (this
is useful for indenting quotes). The margin defaults te 0 (no spaces
before téxt).

For example,
Shakespeare once wrote:

<IN +5
To be or not to be, that is the question.

DOCFOR Page 7 PROMAL Document Formatter

produces

Shakespeare once wrote:
To be or not to be, thdt is the question.

+TI n - Temporary Indent

The temporary indent command indents the next line an extra n spaces.
Since the temporary indent value is set to 0 after each line, relative
and absolute numbers are equivalent. This command is usually used ro
begin a new paragraph. The default value of a is 5.

For example,

+TI

Now is the time for-all good

men to come to the aid of their coumtry.
The quick brown fox jumped aver

the lazy dogs.

will produce

Now is the time for all good men to come to the aid of
their country. The quick brawn fox jumped over the lazy dogs.

Here is an example of .TI in conjunction with .IN:

«IN +5

.TI -5

Once upon a time, there was a girl

named Mary, who had a very small and very
white lamb.

This produces:

Once upon & time, there was a girl named Mary, who had a
very small and very white lamb.

+RM n - Set Right Margin

The set right margin command sets the right margin for all texct. The
number n may be abscolute or relative, and defaults to 60.

For example,
+F1
«RM 40 "
Now is the time for all good men to come to the aid of
their country.
produces
Now is the time for all geod

men to come to the aid of

PROMAL Document Formatter Page 8§

their country.

+TM n - Set Top Margin

The set top margin command sets the top margin; i.e., the margin between
the header and the page body. The anumber n may be absolute or relative
and defaults to 2.

For example,
-TH &
produces 4 lines between the header and page body starting with

the next page.

+HM n Set Header Margin

The set header margin command sets the margin between the top of the
page and the header. The number n may be absolute or relative aad
defaults to 2.

For example,

+HAM +2

produces 2 additional lines between the top of the page and the header
starting with the next page.

.BM n - Set Bottom Margin

The set bottom margin command sets the margin between the page body and
the footer. The number n may be absolute or relative and defaults to 2.

For example,
«BM
produces 2 lines (the default) betwesen the bottom of the page body and

the footer starting with the end of this page.

+FM n - Set Footer Margin

The set footer margin command sets the margin between the footer and the
end of the page. The number n may be absolute or relative and defaults
to 2.
For example,

+-FM 3
produces 3 lines between the foater and the bottom of the page starting

with the end of this page.

DOCFOR Page 9 PROMAL Document Formatifer

+PL n Set Page Length

The set page length command sets the total number of lines per page.
The number of actual text lines printed will be determinmed by this
number and the margin settings. The number n may be absolute or
relative and defaults to 66.

For example,

+PL 84

sets the length of the page to 84 linmes (legal size).

.LS n - Set Line Spacing

The set line spacing command sets the number of limes to skip between
text lines. The number n may be absolute or relative and defaults to 1

(single spacing).
For example,

«NF

.LS 1

These lines are
single spaced.
+LS 2

These are double
spaced.

produces
These lines are
single spaced.

These are double

spaced.

l Skip Lines

.SP n

The skip lines command produces blank limes. It does not produce blank
lines past the end of a page. Por example, if there are 2 lines left in
the page body and ™.SP 3" i, executed, only 2 blank lines are produced.
To produce Slank lines at the top of a page, use the begin page (.BP)
command, then the skip lines command. Then number n may be absolute or
relative and defaults to 1.

For example,

-« NF

.LS 1

Now is the time for all good mem to come
«SP

to the aid of their country.

PROMAL Document Formatter Page 190 DOCFOR

produces
Now is the time or all good men to come

to the aid of their country.

LOB /lt/mt/rt/ - Secr 0dd Header

The set odd header command sets the text which appears at the top of odd
numbered pages to the given text. The header is a single line, whiech is
given in the form of three fields, shown abave as "1t", "mt" and "rt",
meaning "left text™, "middle text” and "right text"”. The "ie" field is
flushed left in the header, the "mt" field is centered, and the "re"
field is flushed right. -

In the above symbolism, the fields are delimited by "/". In actuality,
any nonblank character except "#" can be used as the delimiter as long
as it does not appear in the text fields.

It is your responsibility to see that the three fields are not so long
as ta fall on top of each other.

Whenever a "#" appears in a text field, it is replaced by the current
page number. : :

For example,
.0H "January Report™ZZZ, Inc."Page #"
produces the following header:

January Report ZZZ, Inc. Page 32

.OF /1t/mt/rt/ - Set 0dd Footer

This command is identical to the preceding "set odd header” command
except that a footer is generated at the bottom of each subsequent
odd-numbered page.

+EH /lt/mt/rt/ - Set Even Header

This comwmand is idertical to the "set odd header” command except that
th- header is generated on each subsequent even nunbered page.

.EF /lt/mt/rt/ - Set Even Footer

This command is identical to the "set odd footer" command except that
the footer is generated on each subsequent even numbered page.

+BR - Break

DOCFOR Page 11 PROMAL Document Formatter

The break commard is used only in fill mode. It causes the output line
which is being built to be printed immediately with no further filling
and no justific tion. Many other commands, such as temporary indent,
automatically cause a break.)

For example,

+.F1

«JU

Now is the time for all good men

«BR

to come to the aid of their country.

produces

Now is the time for all good men
to come to the aid of their country.

«BP n = Begia Page

The begin page command causes the formatter to begin a new page of
output. It has no effect at the top or bottom of a page. If o is
specified, it sets the number for the next page to be printed. The
number n may be absolute or relative, and defaults to +l.

For example.
-BP 10
begins a new page (if curreatly in a page body) and sets the page number

to 10.

.CP n Conditional Page

The conditional page command causes & new page if there are less than n
lines remaining on the current page. The number n may be absolute or
relative and defaults to 1. It will not start a new page if the
formatter is currently at the bottom of a page.

For example,

«CP 15
starts a new page if the body of the current page has less than 15 lines
left.)

.LI n - Literal Character

The literal character command embeds & literal character in the output
stream. This is typically used to send a special command to the prxnk
for something such as font selection. The number o should be an
absolute number between O and 255, and ASCII character number n will be
output. Note that the formatter does not take the effect of any literal

PROMAL Document Formatter Page 12 DOCFOR

characters into account, so a page break could result im a strange
header or footer. If you are in the middle of a page and need to skip
the footer before emitting the character, use a .BP command. If you are
at the ‘top of the page and need to skip the header, use a

For example,

«LI 27
«LI 52
Slanted letters
«LI 27
LI 53

prints "Slanted letters™ in italics omn an Epson MX80, and
+LI 27
LI 69
Emnhasized letters
+Li 27
LL 70

prints "Emphasized .etters™ in emphasized mode on an MX80.

DOCFOR Page 13 PROMAL Document Formatter

SAVPLE DOCUMENT, before and after formatting

The following is an example of a typical document designed for use with

the formatter:

-EF Illl_#_llll

-OF ll‘l’l_#_““

« NF

«NJ

Twobit Computer Company

4321 Somewhere Drive

Nowheresville, NC 27610

«3P 2

+FI1

Dear sirs:

«5P

'JU

-.TI

Receatly, [purchased a Twobit widget enchancer and
kludger (TVEAKer) for use with my Machturbo Hypersonic
69000-e conputer. After using the product for several
weeks, I fcund that it was incowpatible with my
Tangledfinyers Ultracomplex File Lister with Unbelievable
Captions (1UFLUC). .

«SP

. TI

When I attempted to use the TWEAKer with my TUFLUC, I
found that the screen emitted a primordial scream, and
that the disk drives produced large amounts of fire and
red smoke. Just in case this was a fluke, I repeated the
process and obtained the same result. I suspect that

the problem is a result of my custom written Dumb Operating
System (DOS).

« 5P

.TI

If you have heard of & similar problem and have a fix for

it, I would appreciate receiving it (I really like the TWEAKer).

If you do mot know of a fix, I would appreciate a refund,
in addition to §5.67 to cover the cost of a black tie (burmned
by the disk drives). I realize that in the licence
agreement for the TWEAKer, it says that I am your slave
for life, so I can only appeal to your humanity.

«SP 5

«NF

«NJ

+.1IN #48

Joe Customer

-Iﬂ -as

PROMAL Document Formatter Page 14

DOCFOR

Formatting the above results in the following:

Twobit Computer Company
4321 Somewhere Drive
Nowheresaville, NC 27610

Dear sirs:

Recently, I purchased a Twobit widget enhancer and kludger
(TWEAKer) for use with my Machturbe Hypersonic 69000-e computer. After
using the product for several weeks, I found that it was incompatible
with my Tangledfingers Ultracomplex File Lister with Unbelievable
Captions (TUFLUC).

When I attempted to use the TWEAKer with my TUFLUC, I found that
the screen emitted a primordial scream, and that the disk drives
produced large amounts of fire and red smoke. Just in case this was a
fluke, I repeated the process and obtained the same result. I suspect
that th: problem is a result of my custom written Dumb Operating System
(pos).

1f you have heard of a similar problem and have a fix for it, I
would ajpreciate receiwing it (I really like the TWEAKer). If you do
not know of & fix, I would appreciaste & refund, in addition to §5.67 to
cover tre cost of a black tie (burned by the disk drives). I realize
that in the licence agreement for the TWEAKer, it says that I am your
slave for life, so I can only appesl to your humanity.

Joe Customer

(blank lines to bottom aof page)

DOCFOR Page 15 PROMAL Document Formatter

