
PHDHIHL
Public Domain Library

Commodore Disk number 1

PDC- 001

SystemsManagementAssociates
3325 Executive Drive, PO.Box 20025

Raleigh,North Carolina 27619

(W

Contents of Co-odore PROHAI. Public Domain Disk #1

PLEASE NOTE: All public domain disk materials are contributed works. SMA is
only serving as a clearing house for these materials as a service to our PROMAL
customers. You may copy, use, and further disseminate all Public Vlomain Disk
materials as you see fit. All materials are supplied "as is". SMA does not
support these programs in any way. PLEASE DO NOT CALL with questions.

ASSEM.(5,6) =- the assembler. ASSEM.S also. uses include files
SYM.S, ASSEMTABLES-S, 02511.5, EXP.S, GETMODE.S, EQUATE.S,
PSEUDOOP.S, INSTRUCT-S, MACRO.S, (20931.5.
Note: DYNO must be off when running ASSEH.C.

ASSEMDOC.T a documentation
DDUHP.(S,C) I program to dump a file in hex.
BLOAD.(S,C) I program to load object file made by ASSEMJ:
EXAMPLE.(A,Z) 8 example program for ASSEHJL EXAMPLEJ is

the object program produced when EXAMPLE-A is assembled EXAMPLE.A
also uses include file SYSTEH.H, a collection of macros

MACROT.(S,C) - learning aid for macros. Explained in ASSEMDOC.T.
EXPT.(S,C) - learning aid for expressions. Explaind in ASSEMDOCJ‘.

Assembler capabilities include macros, include files, conditional assembly,
arithmetic and boolean expressions. Output file is a PROHAL sequential file
beginning with 2-byte load. address, with remaining bytes being the assembled
code. This object file can be loaded by the BLOAD program above, but cannot be
loaded by the PROMAL EXECUTIVE commands, because it does not conform to the
definition of a PROHAL relocatable object module (as described in the RELOCATE
utility comments). It also cannot be loaded with the MLGET function, because
it is not type 03.! (for Apple) or PM (for Commodore).

However, the RELOCATE utility (on the PROMAL 2.0 END USER DISK) can easily be
modified to convert the Hartens’ assembler output to a relocatable PROMAL
module. The following minor changes to the “LOCATE source code are required
Please. save the original version of the source! The lines beginning with
question marks are for conditional compilation. The following modification
works for the Commodore version:

In file RELOCATE.S, in P306 OPEILPILB, rep-lace the lines:

1? MODE <>'W"
?A
HANDLE-OPEN NAHKJIODEJERUE) ; Mn-Promal file

?C
HANDLE-OPEN NAME,MODE,'1" ; PKG ii1e

ELSE .

HANDLE-OPEN NAMEJWDE) PROM]. output file

with the single line:

Macro assembler by C. Martens

HANDLE=OPEN(NAME,MODE) Open file

Compile your new version of RELOCATE. You are now ready to assemble your
program twice with different .ORG statements as described in Appendix I of the
PROMAL manual and use your new RELOCATE on the resulting output files.

PS: If you use Martens' BLOAD utility instead of making the object code into a
PROMAL module, and you execute the program from the EXECUTIVE with a GO
command, please note that your assembly program MUST save the word at location
$0065 (Apple) or $003A (Comodore 64) on entry and restore it before exiting
with an ETS. If you don't and you call any PEOMAL library routines inside your
assembly program, your program will not return to the EXECUTIVE. The same
thing applies if you enter the machine language program by using PROC JSR.

Di mbler by Steve Vermaulem

DIS,LS,C) = the program

Disassembles instructions in a specified range of memory addresses. For
example, the executive command "DIS 1000 1000" disassembles memory data within
the given range of addresses. See source file for more usage information.

Disk Fixer progr- and documentation of disk structures by A. Ryan

DISKFIX.(S,C) 111a fixer program. It uses the following includes LIB-
RAILS; caa_zquarzs.s, JSRDEF.S, GETCHR.S, CSRUPDATE.S,
BUILDSCREEN.S,.5CANKEY.S, ”DR-S, EDITCHR.S, EDITEXToS,
INCHkas, BLOCK.S, “BUY-S, reruns, INIT.S, LINK.S, SCTRUPD-
ATE.S, warms, PmUF.S, TERMINATE.S, WINDOW-S, BPRNT-S,
Fmon.s, 33533.5, SCTRCHK-S, DS'IAfos, INBUF.S, PRINT-S, OPE-S

CHANGE.(3,0) lacks/unlocks a file. Execute CHANGE filnam L to lock, and
CHANGE filnam If to unlock. See documentation and commentary
in CHANGB.S.

STAT.(S,C) A program to: issue a- cons-and to the 1541 disk drive and see
the completion statue. See documentation and commentary in
CHANGE-S.

TIHE.(S,C) Demo for 064’: real time clock. .Initialize it with TIME HR
MK SS. subsequent TIME executions with no arguments show the
current time as "Hummus".

Documentation The included hardcnpy documentation explains the 1541 disk
structures, how commands are issued to the drive, and. how to
use DISKFIX. DISKFIX allows you to display any sector in an
saay-to-recogniae format and to easily make changes.

DISKFIX-Part 1
By A.Ryan

This series'of three article: describes the DISKFIX
system that permits you to manipulate data directly at the
track and sector level of the COMMODORE—1541 Disk drive. The
primary use of this utility is to repair or rescue data that
has become otherwise unreadable by the 1541 DOS, typically
as a result of an accidental SCRATCH or 'PROMAL DELETE
command. In addition, discs whose ~files have become
"poisoned" as a result of a variety of circumstances can
often be rescued with careful editing of various data on the
disc.

Since this utility bypasses most of the native 1541
DOS, it is extremely powurful, and in unskilled hands is
capable of seriously damaging the data in your files. In
skilled hands however, it is possible to retrieve data that
would be considered as totally unrecoverable by any other
means. Thus, in order to ensure that you are in a position
to reap the maximum beneiit From such a tool, it is
necessary that you understand three'pieces or information;-

Ell How data is stored and organised on the disc;

:2] How the 1541 is controlled;

[3] How DISKFIX works, and how to use it. m

For this reason this article is divided into 3 sections
covering each of the above areas.

In this portion, we shall examine how data is stored
and organised on the disc itself. Once the disc has been
formatted, (for example, by means of the command: OPEN
15,3,15,"NO:TEST-DISC,ZZ) it consists of 35 concentric rings
or TRACKS numbered From TRACK 1 at the outermost edge of the
disc, to TRACK 35 at the centre. Each track is further
sub—divided into segments called SECTORS, and the number of
SECTORS per TRACK vary from 17 at the innermost tracks to 21
at the outermost. Each SECTOR can contain a maximum of 256
bytes of information. 04 these 256, the first 2 are
reserve; for use by the system, leaving 254 bytes free to
store your data. Table 1 shows the distribution of SECTORS
and TRACKS for the 1541.

TRAQK NUMBER SECTORS
1 - 17 21
13 -- 24 19
25 -- 30 la
31 -- 35 17

Table - 1

Page 1

wannoaua

a—o_— —~
—u—b ~u—m nuno

a;
__o — ~_ a__a _ u— anu_ a_~o__a — u__— ——s _o__»_.o_::arnw- pagan-n. .nnnou=.-nmwanna»:

usualo_

Hagar—u.
.anownnanouwnevus—oar

u aw.a___»_u:_u;:

: [Tubamanna

.—n~wnon— nunuu» nunou» nononou—

Hwfi-mmn-dam—H53—mnn_ffl—0 w_u p—m —: — I_ i—m

_ __ __ ___=._..._5._._..._._.:gg. 7 sa

~annannwdawn.woman. no.=manawn.e—anr.m—unmmmm :=——
suntan;qupn aaso.pawn acan*n—um. canonstwo: strung;sauna.Ao>av. suemw—o~m=ranannamnm—n.

.

zen sumomwpm "etc

1ooo Iomrnnnso o_ Iwuocnsn—a—e_ o I «anon-Ic~_ Ican_ o o Iear-unau
Ftnr arena-u_ nonran— a Ican:ovn=\n—o-u an-ncuuInun-an. o Ican:

saga. ea—u.were". «ae>uannan.punaacanyon as;wunaws awnn.

fllllll
nan.— rw 2.3—3»

anpbsun: IPENuODIM

6:883.anmowxmmgon 2:6

Emcnm_

ou a.u oaa o S= :9.;—I.» ;u3» .3 :o3. .3.3 :5now :0—S 3: :3:o :-sumTar—minis._ _ ____ §__ r__:: .25._«>=_.S_u=::_9s_~_>._..i STE—$735.73..—\nuanr 3.Anna! 3 Haunt. .72":3“>2“:
..>..Ia»:

Hana—n ~ ennanswast—m man: are...”a: «3 awna:

/

3.a: .2..._._.___.._._._______.__.__.___...._____ TE.
_______ ._._.___._______amen—J. zmwwr: :0me an

I "a_ .\.>Eco-"2.— Ian...Mann aannana Ino: I :
3......5.2;...a_ o_ u._ ._u_ »_ ._c =_:.__ :-:_:1_.3—._ a .3.a...T.T._=_:.“_=H: "I.ERIE? page».u. a. 5I...—B a:5—3-22. :—nw-nr .—

Ktuo Lt-I lama.p

nun ot—sz up";u

‘1“92-8! mu:.

mES a: 2:6r355Emcwm N

The reason for the varying number of sectors per track
5 to minimise the variation in recording density between

the inner and outer tracks, in an attempt to increase the
reliability of the drive. Most other disc systems, ie,
APPLE, TANDY, etc, adopt the simpler approach of a constant
number of sectors per track.

To give you some idea of the dimensions with which we
are concerned, on the 1541, at the outermost tracks the bit
density is about 4000 bits/inch whilst on the innermost
tracks it is about 600m bits/inch. To put it another way,
in the distance represented by the diameter of a human hair,
at the innermost tracks this distance will contain about S
bits or 1 byte. You can thus understand that a small piece
of dust, dirt or smear of a fingerprint can obliterate quite
a lot of data

In order for the Disk Operating System (DOS) to be able
to locate a file of data, there has to be an index of file
names, usually called the DIRECTORY. In addition, there
must also be a ‘map' showing which sectors of the disc have
been allocated. In the 1541, this 'map' is called the BLOCK
AVAILABILITY MAP, and both the BA" land the DIRECTORY are
stored on TRACK 18.

This track was chosen to minimise the number of head
movements necessary to access any particular file. Track
IS, from Table - 1, has a-maximum-of 19 SECTORS 'available.
Of these, Sector O is reserved for the BAH, whilst Sectors 1— 18 are available for the DIRECTORY. The organization of
Track — 18 is illustrated in Figure — 1.

Ignoring for the moment the BAH, each DIRECTORY sector
is divided up into eight 32' byte sections that store a
single entry. Hence, since there are 18 sectors available
for the DIRECTORY, and each sector can hold B file records,
the 1541 can have a maximum of 144 files on each disc.

For the very first entry in each sector, bytes O and 1
are the FORWARD-LINK POINTER to the next sector, (this will
be further explained later) whilst bytes 2 through 31
contain the actual directory data. In the second and
subsequent 32 byte segments, bytes 0 - 1 contain SOB. Byte
2 of each directory entry is the FILE TYPE DESCRIPTOR, and
its mapping is also shown on Figure - 1.

Bits O,1, and 2 of the FILE TYPE DESCRIPTOR are used to
identify the 5 COMMODORE file types. Notice that since 3
bits are allocated for this function, in principle it is
possible to map E unique file types. By using the un-mapped
3 codes it is possible to produce a number of bizarre file
types, but in practice these 'un-mapped' types are of little
practical value.

Page 2

Of the remaining 5 bits in the byte, onl bits 6 and 7
are utilized by DOS. Bit 7 denotes the current status of
the file; a '1' signifies that the file has been properly
'closed', whilst a ‘n' signifies that the file is currently
still open.

Improperly closed files are one of the root causes of
’poisoned' discs, and as will be explained later, must be
treated with great care if you are to avoid further
poisoning of the disc.

Bit 6 is an undocumented feature of the 1541 DOB, and
signifies the LOCK/UNLOCK status of the file. By setting
this bit to a '1’ you can prevent DOS from erasing this
file. (A future article will present and explain the PROMAL
source code for 3 routines, LOCK, UNLOCK, and CHANGE that
take advantage of this feature to enable you to prevent your
files from being DELETED by PROMAL)

Bytes 5 through 2B are the left justified file name
padded out vith the SAC Shifted-Space character.

Bytes 21 through 23 are used in the RELative file
definition, and they will be explained later, for other than
RELATIVE file types, they ~are 300. Similarly, bits 24
through 27 are also unused by DOE.

ENE5 29 and 29‘are ordinarily set to sea, but are used
dynamically by the SAVE & REPLACE feature of CBH-DOS Version
2-6 to temporarily store the FORWARD LINK POINTER during the
SAVE portion of the new file data. This data gets
transferred to its normal location, bytes 3 and 4 of the 32
byte record, at the conclusion of the operation.

Finally, bytes 3! and 31 are the file length descriptor
word in normal 6502 Lo—byte/Hi—byte format.

The FORHARD LINK POINTER is the~ means by which DOS
links'the various sections of a file stored on the disc.
Bytes 3 and 4 of each .32 byte file record contain this
pointer, byte 3 points to the TRACK where the next segment
of the file is located, whilst byte 4 points to the SECTOR
location;*

This mechanism is used for all the files, and bytes O
and 1 of every sector of actual file data contain these
pointers. When the last sector is written to the disc, byte
O is set to 500 to indicate to DOS that this is the last
sector of the file. Remember,-TRACKS.are:numbered from 1 -
35, thus there is no TRACK O. The value contained in byte
1, which would ordinarily mean the next sector location, now
indicates the number of valid bytes in this sector, and will
have a value from 3 to 256.

At this point we can now explain the construction of
the BLOCK AVAILABILITY MAP or BAH. This is best done

Page 3

pictorially as shown in Figure - 2. Notice that as usual,
bytes O and 1 contain the FORWARD LINK POINTER, in this case
for the DIRECTORY, and will normal point to TRACK 18
SECTOR 1.

Byte 2 contains the DOS format identifier, byte 3 is
unused, whilst bytes 4 through 143 are grouped in 4 byte
records that map the allocation table.

Bytes 144 through 15? contain the left justified disc
name padded out with shifted spaces, bytes 16B and 161 also
contain the SAC shifted-space character.

Bytes 162 and 163 contain the disc ID characters, byte
164 contain 3A0, bytes 165 and 166 contain "2A“, bytes 167
through 17B contain SAC, and bytes 171 through are unused,
and contain SOB.

The mapping of the allocation table is quite
straightforward. The first byte of the group of 4, i.e byte
4 of the sector, byte B, byte 12 etc, contains a value
representing the number of free sectors in the track
represented‘by the 4 byte group. The remaining- 3 bytes
represent a straight bit map of the, allocated sectors- A
'1' means the sector is free, whilst a '3' means that it is
allocated. It is easier-to illustrate than describe, and I
suggest that you study Figure - 2 to gain a clear picture of
the techniques used. Notice.that the first 4 byte group
maps TRACK 1, the next 4 byte grouprRACK 2, and so on.

The only unusual sequence is the sector mapping within
the group. Again, it is much easier to understand from a
picture rather than a textual description, so please refer
to Figure — 2.

whilst the mapping of the BAH is interesting from an
academic standpoint, in practice there is very little need
to 'tinker’ with the data of the bit map. If you need to
re-construct a bit map from a damaged disc, then use DISKFIX
to recover the data, and when leaving» DISKFIX select the
'update BAH‘ option, which will perform this chore for'you.

At this point a word of warning is appropriate. If you
use DISKFIX to rescue a file that was SCRATCHED or DELETED,
then DOS will have de-allocated the sectors from the BAH.
Unless you force a re—construction, or perform it yourself,
although the file can now be recovered from the disc, the
next WRITE operation will, in all probability, overwrite one
or more of your files sectors, and you will commence to
'poison' the disc again! This point will be covered in more
detail when we get to part 3.

We have already seen that there are only 5 types of
files recognized by COMMODORE DOS, namely, DELeted, PRoGram,
SEOuential, RELative, and USeR. Of these 5, the PRC and SEO
are actually the same types of file structures, lst even

Page 4

whi

the REL type has considerable similarities. The DEL file 5
simply a deleted or scratched file, rather than a separate
file type, and retains 'all the characteristics of its
previous existence. We shall commence therefore with the
most fundamental file type, the sequential file.

In a sequential file, the data you wish to store is
simply laid down, 254 bytes per sector, one sector at a
time. In order to manipulate this type of file, the entire
file has to be read into the machine, and any modifications
made directly to memory before re—writing the entire file
back to the disc. Since memory manipulations are extremely
rapid in comparison to disc access times, such a file can be
manipulated quickly. The limitation, however, is that the
file cannot be larger than the-available memory, and usually
only a small fraction of the total available memory. This
type of file is usually used for the storage of programs,
text files, and other data that does not need to be
retrieved from the disc on an individual record basis.

In the case of the 1541, the FILE TYPE DESCRIPTOR byte
will be set to 581 (SEO) or 582 (PRO) and the FORWARD LINK
POINTER in bytes 3 and 4 of the '32 byte directory record
will point to the TRACK and SECTOR that contain the first
sector of the file. At this first sector, and at every
subsequent sector save for the last, bytes 0 and 1 will be
the FORWARD LINK POINTER to the-next segment of the file.
The last segment will be identified because byte B will be
53%, and the contents of byte 1 will represent the number of
valid data bytes in this sector.

If the sequential file in question is actually a
program, (either BASIC or MJL) then the first 2 bytes of the
FILE will contain the load address. Since the first 2 bytes
of the SECTOR will contain the forward link pointer, it will
be bytes 2 and 3 of the first sector of the file that will
contain the load address. For example,v all normal BASIC
programs will start at SUSHI, thus.byte 2 will contain 561
and byte 3 will contain SOB, in normal 65fl2 Lo-byte/Hi—byte
format.

If the sequential file simply contains data, then byte
2 and 3 of the first sector will contain data.

The next type of file file is the RELATIVE file, and
its structure is, in reality, only slightly more complex.
The object of using:RELATIVE files is twofold:-

[1] To be able to reference more data than can be
contained in memory;

[2] To be able to access any record within the file.

In order to achieve these objectives, the data to be
stored must be organised into fixed length RECORDS, and that
the maximum record length cannot exceed 254 bytes. Each

Page 5

record is sub-divided into FIELDS, and a these are further
sub-divided into CHARACTERS.

In order to be able to access any individual record of
the file, DOS has to know where the record is located on the
disc surface.. This information is contained in the SIDE
SECTOR file created by DOS when the file structure was
originally set up. The SIDE SECTORS are simply a small
sequential file containing a list of TRACK/SECTOR pointers.

If you examine Figure - 1 again, you will observe that
bytes 21 through 23 are reserved for use by RELATIVE files.
Byte 21 contains the TRACK, byte 22 the SECTOR, and these
point to where the first SIDE SECTOR segment is located. As
usual, bytes B and 1 of this sector will point to the next
and so on. Byte 23 contains the record size that was
defined when the file was initially created.

The mapping of the SIDE SECTOR file is:

Bytes B - 1 Forward Link to next side sector
Byte 2 Number for this side sector
Byte 3 Record Length
Byte 4~-> 5 T & S.for side'sector O
Byte 6 - 7 T & S‘for side sector

3

:
3 S for side sector 5
& S for data block I
a S for data block 2

Byte l4 - 15
Byte 16 - l7
Byte l7 — 15 4-H

N0! IIn UI aByte — 255 T & S for data block 12O

As you can see, since there is provision for a maximum
of 6 side sectors, and each side sector can refer to up to
12¢ data blocks, the maximum number of sectors that can make
up a file is 720. Note that this does not mean 72% RECORDS,
but rather 72¢ SECTORS. Since‘a blank disc can only hold
664 SECTORS, in practice one cannot reach this limit. The
maximum number of RECORDS is.65535, and since this implies a
RECORD length of 2 bytes maximum in order to stay within the
bounds of the' l63K bytes of disc space, this is also
unlikely to be-reached. As a final note concerning REsORD
size, you should make the size equal to 1 + (number of chars
in a record). This. allows~ for the CR character that
terminates a record.

Records themselves can contain whatever data you
desire, and in order to conserve file space, most files will
concatenate the fields into a record, and separate the
fields when the individual records are read. If you wish to
avoid this, then you can use a field separator character,
but this will increase the field size, and in addition, this

Page a

separator character may not be used within a field as part
of the data. In general, a CR or an ASCII s the normal
field separator. -

Since the 254 byte mit on RECORD size is
factored by 1,2,127, or 254, in most cases records will span
sector boundaries. This may well provoke a 'bug' in the way
DOS updates records. This bug can be avoided by ALWAYS
positioning the record pointer both BEFORE and AFTER writing
to a record. If your record sizes are one of the factors,
of which only 127 and 254 are very practical, this bug is
not triggered.

This explanation is only a very brief overview of
RELATIVE file fundamentals, sufficient for you to understand
how they are'stored on a disc. To cover the subject in
depth would require an article in its own right, and is
really beyond the scope of this tutorial.

This article has attempted to show you how data is
organised on the disc surface. In.Part II we shall examine
how the 1541 is controlled from the hardware and software
aspects.

Page

maximum l i only

DISKFIX-Part 2

In Part I we briefly skimmed over the way data 5
stored on the disc, and how the Disc Operating System places
an index onto Track 15 to enable any file_to be recovered.
In this portion we shall examine how the mechanics of file
storage and retrieval are accomplished.

The 1541 is somewhat unique in that it does not use a
conventional VLSI chip for the disc controller functions.
As far as I am aware, only the APPLE disc drive shares this
distinction. Instead of a VLSI Floppy Disc Controller, the
1541 uses a 6502 microprocessor, equipped with 2K of RAM and
16K of ROM firmware to carry out the twin tasks of Serial
Port Communications Processing and Floppy Disc Controller.

These twin tasks are performed on an interrupt driven
time-shared basis, with interrupts occurring every 12 mSec.
Normally, with the drive - in an idle state, the
Communications Processor (CP) is active scanning the serial
port ATN line waiting for requests from the COMMODORE—64.
Every 16 mSec, an interrupt generated from a timer in the
Complex Interface Adaptor chip (CIA) will force 'the 6502
into the Floppy Disc Controller (FDC) mode. In this mode
the 65B2 will scan the TASK LIST looking for a valid task to
perform. If no tasks are currently queued, then control is
returned to the CP.

If a task is queued, then this task is performed, and
at the conclusion a return code is put in the job queue
representing the task status.

Let us consider a typical task, that of reading a
sector of data. The DOS will put into the TASK LIST the job
code for a SEEK of the desired track and sector. At the
next interrupt, the FDC will attempt to execute this task by
first comparing the current read head position with the
target location, and stepping the head in or out the
appropriate number of steps. When the head has settled, the
search for sync characters commences. Assuming that this
search is successful, the TRACK ID will be read. This ID,
which is written during formatting, will contain the track
number. If this number agrees with the desired track, then
this fact is reported to DOS._ If the number is not correct,
then the difference _between the actual and the desired
position is used as the new step increment, and the head is
moved again; In general, a SEEK will succeed on the first
attempt. Then a READ job will be placed in the TASK LIST
and the appropriate sector ID will be sought. If this
search is successful, the data following the sector header
will be read into a buffer area in RAM for processing by the
CP.

Page

This description is necessari very brief and does
not take into account the many errors that can occur, but is
sufficient for our immediate needs. The main point to grasp
is that the ’servo-mechanism' of head positioning is
essentially critically dependent upon the correct formatting
of the disc. Unlike larger hard disc drives, the head is
absolutely positioned on the disc surface. This means that
it relies on the accuracy of the stepping motor to ensure
that when the head is requested to be positioned over (say)
track 5, that it is exactly over the track concerned. To
show that it has arrived, the track is written during
formatting with a track and sector ID code so that by merely
reading.this header the operating system can confirm that
the head is positioned over the correct track. The stepping
motor can step the head in 1/2 track increments, and it is
one of the error re—try procedures to move the head 1/2
track from its present location and attempt to read the
track again to attempt a recovery.

Before you leap for joy and think that by positioning
the head in half track steps you can double the capacity of
your drives, let me say that the width of the read/write
head is. rather wider that 1/2 ltrack to ensure that
sufficient overlap exists to take into account stepper motor
positioning tolerances. Thus any attempt to write to every
1/2 track will ensure that when the head is positioned it
will read a portion of the desired track and a portion of
the adjacent track, thus thoroughly confusing the read
electronics.

So far I have given you the essential 'flavour' of, the
tasks needed to satisfactorily read/write data. To go into
the full detail is quite beyond an article of this nature,
and regrettably, must be left for another day. I shall
continue with a discussion of the nature of the RAM buffers
and how they are used.

I have mentioned that the FDC scans the TASK LIST
looking for a job to perform, this TASK LIST is an area of
the 65B2 RAM, and has associated with it a dedicated buffer
area for each of the 5 usable positions in the TASK LIST.
Table - 1 identifies the major locations and associated
buffer areas.

TASK LIST BUFFER ADDRESS _ TRACK ADDRESS SECTOR A DRESS
SOOOO B SO3OD-SD3FF SEEDS $OCO7
SOSEI 1 Si4fl0-SB4FF SEEDS $OBE9
SQOBZ -2 SCSOB—SOSFF $BBCA SOBBB
SOOO3~ 3 SDoOD-$B6FF SSOBC SDBOD
$0094 4 $07GC-307FF SOCBE SCOOP
SOODE 5 ND RAH SBOIE sua11

TABLE - 1

Thus, if the job code for'a SEEK is placed in $OOOO, the

Page 2

track number placed SOOOé, the sector number in $OOO7
when the head has settled,_and after a READ code has been
placed in SOBDO, the data will be placed in buffer #O from
$032M to $OSFF.

Table - 2 lists the appropriate job codes.

JOB CODE FUNCTION
sea READ
s90 WRITE
saa VERIFY
sea SEEK
sea BUMP
son JUMP
sea EXECUTE

TABLE — 2

After the tasks have been executed, the return code
replaces the original. job code, and Table - 3 identifies
the meanings-

RETURN CODE HEAulNB ERROR CHANNEL CODE
$Ol OK OK -
$O2 READ ERROR, Header block missing. . .2B
sea READ ERROR, Mo‘sync character 2:
504 READ ERROR, No- data block 22
$05 READ ERROR, Data checksum. error 23
$07 URITE ERROR 25
we WRITE PROTECTED; 26:
#99 READ ERROR, Header checksum error 27
~3OB READ ERROR, Disc ID mismatch 29

TABLE - 3
With the above- knowledge, we are equipped to take control
of the 1541 FDC directly.

In order to read and write to the 1541 directly, we need to
open a DIRECT ACCESS‘ channel: to the drive. This is
performed in BASIC by means of the statement:

OPEN: file“, devicefi, channelfi, "10"

To pass data to the ~1541 via this direct access path, in
BASIC one would use the form:

PRINT #15, direct access function code, channe.40, drivefi,
track, sector

Page

B-P
U2
M-R

B-A
B—F
M-E
B—E

The function codes that may be used are:

BLOCK READ, read a data block into 1541 RAM
BUFFER POINTER, position pointer to any byte in 1541 RAM buffe
BLOCK WRITE, write contents of 1541 RAM buffer to disc
MEMORY READ, transfer contents of 1541 memory to C-64
MEMORY WRITE, write to 1541 RAM
BLOCK ALLOCATE, set bit in BAM bit—map to put sector in—use
BLOCK FREE, reset bit in BAM bit-map to free sector
MEMORY EXECUTE, execute code in 1541 RAM/ROM
BLOCK EXECUTE, transfer code from disc and execute

Table - 4

At this point I propose to clarify the actual mechanism
used within the COMMODORE operating system to exchange data
with a peripheral device. It would seem that there is a
certain amount of confusion in this matter, and neither the
1541 Users Manual nor any_ of the other ancillary
documentation makes any attempt to clarify the subject.

As shown above, to open a direct access channel to the
peripheral we use (in BASIC) a statement of the form:

OPEN file*,device#,channel*,filestring
Regrettably, the ’file*' does not refer to a file, and the
'channel#' does not strictly refer to a channel either! No
wonder there is a great deal of confusion. It becomes even
more confusing when we use machine-code to perform this
chore, for, as we-shall see in the final part, some of the
syntactical conventions we used in BASIC simply do not work
in M/C. Thus it is high time to put matters straight and
explain once and for all how this file handling mechanism
works.

Perhaps the best way of visualizing what is taking place is
by means of a simple diagram. Consider Figure — 1

.
' 1541

-64 5'1 *2 - lC :3' ‘ chan #3 device #9

OPEN 2, B, 3, "t"

Figure - I

In fact, what Commodore refers to as a 'file#' is actual
a 256 byte buffer in RAM, as is the channel#, in this case
in the 1541 RAM. The numbers in the 'OPEN' statement are
simply your logical numerical labels, and may be chosen to

Page

M-H

suit your purposes. In the statement Figure - l, we are
simply saying "Open a Direct Access path (the # symbol)
to Device #8, using logical buffer #2 in the C-64, and
logical buffer #3 in the disc drive." To place data in
these buffers involves commanding the disc drive to REFD a
TRACK/SECTOR, and this can be achieved by means of the
command.

Remember that Channel #15 is the path by which commands are
given to the disc drive, thus to place the data of TRACK
lB/SECTOR 1 into this already defined buffer, we execute:—

PRINT i15,coeeandstring;channel§;devicee;track#;sectori

or, filling in the blanks;

PRINT #15,'U1';3;B;13;l

After this command has executed, the contents of T—1B/S—l
will be in logical buffer #3 in the 1541 RAM. To feich the
data into the c—e4 RAM, we can use either INPUT # or GET #.
Since INPUT # will interpret certain characters as
delimiters, and, in general, we cannot prevent these
characters from being.present, we must use GET #, which can
accept any character, including NULL.

Thus, to‘complete the-illustration} we would execute:-

FOR III TO 255
SET $2,2581F 23-" newmm
DANAS-DATA§+ZS
NEXT 1

The point to grasp is that whilst we usually make the file#
and the channel# the same value, there is no logical reason
to do so. Indeed, if we ever get involved with devices
such as plotters, then we may well have to come to grips
with having a number of files open with channel numbers (or
secondary address, which amount to the same thing) that are
not the same as the logical file#.

It is also important to grasp that the filefi/channelfi are
actual areas-of RAM, and can be refereed to directly, if
necessary. As shown earlier, there is a fixed relationship
between the TASK' LIST and- its associated buffer. The
number of the-buffer is not the same as the logical number
that you assign, but simply the order in which DOS will
assign these buffers as you open-nor" paths to the disc.

The OPEN statement has two other peculiarities that are
worth mentioning- The first concerns the use of "file
numbers" greater than 127. The £541 DOS manual indicates
(on page 14) that file numbers higher than 127 will cause a
LP to be sent after a CR. This is a throw-back to the days
when TELETYPES were used as. the console device, and a
NENLINE function had to be implemented with the CR+LF

Page 5

combination. The point to note i that this additional
character will only be added at the end of a line of data
that is being sent to a sequential or relative file that is
being written to the disc, it will not be sent on the
serial bus to a device such as the printer. Thus, in
general, one should avoid using file numbers greater than
127.

The second peculiarity concerns the 'filestring'. This
descriptor is used for a wide range of tasks, and it s not
surprising that the range of meanings associated with it is
very large. In the case of a Direct Access path, if the
filestring descriptor is "fl" then it signifies to DOS to
"use the next available buffer". If you wish to force DOB
to use a particular buffer, then use the form "#n" where
‘n' can be from O to 4. In this case you will force DOS to
choose a specific area in RAM in which to place your data.
If this is the first path you have opened to the disc, .you
have free choice, but if you have already opened a path,
then your choice of buffer areas are restricted. If the
desired buffer is already in use, DOS will return an error
message via Channel #15, "70 NO CHANNEL“

To get round this error, simply start at 'O' and increment
until no error is returned from the Command/Status Channel.

In the final part of this series,. we shall examine the
subtleties of using the KERNAL ROM routines to open direct
access paths, and will explore the use of the major I/E
routines. In addition, we shall explain the operation and
use of DIBKFIX.

Page a

DISKFIX - Part 3
In this, the final part of the DISKFIX saga, I propose

to show how to use some of the fundamental KERNAL ROM
routines, as well as explaining the use of the DISKFIX
program. DISKFIX makes considerable use of the PROMAL JSR
function to access the KERNAL I/O routines, 'and thus you
should be familiar with the use of this important function
prior to attempting to understand the following explanation.
Since this is more than adequately covered in the PROMAL
users guide, it will not be replicated here. Table 1 lists
the KERNAL ROM routines used by DISKFIX.

AQQ§§§§ FUNCTION
CHKIN SFFCB Switch INPUT channel to file fl.
CHKOUT 3FFC9 Switch OUTPUT channel to file“.
CHROUT SFFDZ General Character output routine.
CHRIN $FFCF General Character input routine.
CLRCHN sFFCC Reset I/O switch to KB and SCRN.

129;; - 1

At this point, it is appropriate to explain the way in which
l/O is controlled in the COMMODORE-64. When the machine is
first powered up, the input is expected from the keyboard,
whilst output is expected to go to the screen. To alter
this source/destination, involves "switching" the input or
output to a designated channel. The computer can only input
or output data from/to a single source/destination at a
time, and in this respect, is analogous to a stereo system.
In a stereo system, there is an input switch to select the
source of input from phono, tape, radio etc, as well as a
loudspeaker switch to send the output the A speakers, the 3
speakers etc. In the stereo system these input and output
switches are operated manually, whilst in the computer, the
“switches" are set or reset via software. Switching the
input or output is performed by first OPENING a channel, and
then using CHKIN to switch the input from the keyboard to
the channel, or alternatively, using CHKOUT to switch the
output to the channel. To reset the input and output to the
Keyboard/screen, the CLRCHN routine is used.

Since DISKFIX performs all its I/O via the Error/Status

Channel, {15, and since this channel is always open in
PROMAL, there is no requirement to open this channel
explicitly. Thus, in DISKFIX, it is only necessary to
switch the input or output as required to get or send data
from/to the disc drive. In order to switch input from the
keyboard, the CHKIN routine has to be called with the
machine X register set to the logical file number, in this
case #15. To switch output, the CHKOUT routine has to be
used again with the register set to the logical file

Page

number, #15.

To restore the normal keyboard/screen settings, the CLRCHN
routine has to be cal ed. In this case, no registers need
to be preset. Note that it is possible to restore the input
to the keyboard by calling CHKIN with the X register set to
SQO, and similarly, the output may be reset to the screen by
calling CHKOUT with the X register set to $O3. Since CLRCHN
performs these chores in a single step, it is usually more
convenient to use this routine.

It is important to note that it is advisable to reset the
input and output settings after each input or output
operation, even if the same channel is to be used again. It
was found during the developement of the DISKFIX program
that if this was not done, then sequential access to the
disc drive would not necessarily behave as expected.
Similarly, it was found that the syntax of the commands sent
to the disc via the direct use of the KERNAL routines was
critital. If you examine the 1541 Users Handbook, you will
find'2hat there are alternative forms of many of the direct
accesw commands- For example, the U1 command to read a
specific track and sector is shown as having the form (in
BASIC. of:-

an'r 915,-u1-;_2;egta;e

However, if thesconmand is to be sent as a string of
characters, then the semi-colon” field delimiter ";" is
unacceptable. The only acceptable-delimiters are the comma,
"," or the space. Hence if you wish to send the above
command as a string, in BASIC you would have to write:-

csu-ux ,2,a,.1a,e-
PRINT “5,3

or,

CSI'UI 2" 38 I?
PRINT i15,C3

This is also true if you;wish to use machine language or the
PROMAL JSR function. In-this case-a "COMMAND-BUFFER" will
have to be defined, and the string of characters
“U1,2,B,1S,a“ placed in. the buffer with the HOVSTR
procedure.

Page

Thus, to emulate the BASIC code, the following PROMAL
fragment would need to be executed:

HDVSTR “Ul,2,9,16,fl',CHDBUF ;set up command buffer
LENSTH-LENSTRtCHDBUF) ;get length of command string
POINTER-CHDBUF ;get pointer to command string
JSR CHKDUT,B,15 3switch output to Channel #15
FDR 1-0 To LENGTH—1
JSR CHROUT,(PDINTER+I)E< ;output characters

JSR CLRCl-iN greset 110.

NH. The code above is not meant to be a stylistic example of
the "best“ way to achieve the desired action, but rather as
an example of the various process that need to be performed
and the order of their execution. Obviously, it is possible
to economise by combining several operations.

Similarly, it was found that the direct access command "M—R"
would mis-behave if the alternate form was used. The usual
form of this command is:-

"H-R" CHRSUo—byteh mum-byte) Cl-Iflstnuflaer of bytes)

,However, the alternate~formt-

'H—Rg'mun-byte) mthi-byte) “shutter of bytes)

is sometimes used. The presence of the colon "I“ after the
command has been found to cause-problems - since it_ is not
required, leave it out. As an example, examine the code for
the FETCH module to see how direct access commands may be
formatted.

Finally, we can now examine the DISKFIX program itself. As
you will see from the source file, the actual program is
extremely compact:-

BEBIN
BORDER-b
SCREEN-O
SHITCH-SIT
PUT*CLR
BUILDSCREEN
INIT
REPEAT
SCANKEY

UNTIL KEYCDDE-FB
TERHINATE
END

The program is built from 24 modules, plus the standard
LIBRARY functions. Each of these modules consists of only a
few lines of code, and-performs a single simple function.
For example, the-function ADDR contains only a single line
of code, whilst the longest module, the procedure WINDOW,
contains only 44 actual lines of code representing 12

Page 3

(J!

choices of screen update data, each choice being no more
than 4 lines of code. This structure illustrates the
modularity of PROMAL programs, and shows clearly how easy it
is to construct functional complex programs from
individually simple modules.

When the program is executed, you will be presented with a
display screen showing the contents of Track 18 Sector 1.
This is the first directory sector, and is usually the first
place to start. Notice that the display window at the top
of the screen has been optimised to reveal the organisation
of the directory. Hence, it is very easy to see at a glance
the file names, forward link pointers, file type
descriptors, and file length data.

Depressing the "+" key will cause the next sector to be
displayed. If the current sector is already the last valid
sector, the count will "wrap-around" to the first sector,
#6. Similarly, if the “-" key is depressed, the previous
sector will be displayed. Again, sector wrap-around will
occur if you are. already at sector a, and the highest
numbered sector for the particular track where you are
located will be displayed.

Depressing the F1 key will cause the sector pointed to by
the forward link pointer bytes to be displayed, and the
track and sector windows to be updated, as well as the link
byte display. If the current sector is the last in the
file, depressing the F1 key will cause the END—DF-FILE
warning message to be displayed.

Depressing the F2 key allows you to select the track and
sector to be displayed. The display window will be
highlighted in reverse video, and hitting RETURN will cause
the next window to be selected or the entry completed. -
The cursor keys.behave as expected, and allow the cursor to
be positioned anywhere in the-display window. Notice that
the number displayed in the CSR window represents the
position of the cursor-in the 256 byte sector. If the F3
key is depressed, the character under the cursor may be
edited. Simply enter the decimal number desired, or hit
RETURN and enter the> desired hexadecimal number. This
feature is useful for changing the file type descriptor byte
for example to "unscratch" a deleted file. Notice that the
cursor does/not move after a character update.

Depressing F4 switches you to the EDIT TEXT mode. In this
mode alpha—betic characters may be entered, and the cursor
will move to the next character. The cursor keys operate
normally allowing multiple corrections to be made.
Normally, upper case characters are entered in this mode.
Depressing the SHIFT key allows the lower case characters to
be used. The EDIT TEXT mode is useful for modifying the
name of a directory entry for example.

Page

The F5 key is probably the most dangerous key of all Thi
key allows you to re-write the currently displayed sector
data back to the disc. Normally the data would be- edited,
and then re—written back to its original location.
However, if the F2 key is depressed, it is possible to move
the data to another location on the disc. In order to allow
an escape, note that a warning prompt is given, and any
entry other than F2 or 'V' will cause this mode to abort.
After depressing F2, F5 must be re—selected to re-write the
data.

Since DISKFIX does not use the DOS, it is possible to write
to discs that have had the disc DDS ID changed. Normally,
byte 2 of the SAM contains the ASCII "A" character to
signify that this is a 1541 disc. If this character is
changed then the DOS is unable to write to the disc, and the
error message DDS MISMATCH is displayed. Some disc
protection schemes deliberately alter this byte to
“write-protect" the disc. DISKFIX will ignore this error
and allow this byte to be changed at will and to write to a
disc that is otherwise incapable of being written to.

Similarly, since DISKFIX makes no checks of the SAM, it will
allow you to read a sector from one.disc, to remove the disc
from the drive and replace it with another, and to write to
the second disc. Be careful! This tool can rescue badly
"poisoned" discs, but with only a moments carelessness Can
also cause considerable damage. Practice-on a sacrificial
disc before using in anger!

Depressing the F8 key will allow you to exit from DISKFIX.
A prompt is displayed asking whether you wish to update the
SAM or not. If you.have done anything to alter the number
or mapping of the used sectors, then you should update. For
example, if you have used DISKFIX to recover a scratched
program, then the BAH must be updated to prevent the DOS
from over-writing the recovered file. The updating is
performed by using the DOS "VALIDATE" command, and this will
read every file on the disc and allocate sectors in the SAM
according to the contents of each file.' This process can be
quite time consuming. so-be prepared to wait for several
minutes with a full disc.

If you choose not to update the BA" then DISKFIX will exit
after initialising the drive. During the developement
process it was found that if the drive was not initialised
then a.strange illegal error message could be provoked from
the 1541. This usually occurred if discs had been swapped
and is presumed to occur as a result of an internal
inconsistency between'the BA” in the 1541 RAM and that on
the disc. Initialisation proved to be the complete cure.

Finally, feel free to copy and distribute DISKFIX. I have
placed_it in the public domain in the hope that it will
prove to be a useful and instructive tool.

Page 5

PHDl'flHL
Public.Domain Library

Commodore Disk number 2

SystemsManagementAssociates
3325 Executive Drive, P.0.Box 20025Raleigh,North.Carolina 27619

PLEASE NOTE: All public domain disk materials are contributed works. SMA is
only serving as a clearing house for these materials as a service to our PROMAL
customers. You may copy, use, and further disseminate all Public Domain Disk
materials as you see fit. All materials are supplied "as is". SMA does not
support these programs in any way. PLEASE DO NOT CALL with questions.

Screen creator by Rev. Hike Cargill
SCREEN.(S,C) = program to create
GET SCREEN.S = procedure for reading the created screens.
SCREEN.T = documentation

A help screen or the like can be created and stored as a disk file The
displaying program (which you write) can read the screens using the procedure
in GET_SCREEN.

Printer control issuer by Julia Christianson
PRINT1.(S,C) = the program
PRINT1.T = documentation

This demo allows various printer control characters to be issued to the
printer, one at a time, from the keyboard.

PROHAL source file lister by Garth Ingram
PRINT2.(S,C) = the program
PRINT2_DOC.D = documentation

Prints with page headings. Also, controls can be imbedded in the source code
(they look like comments) to eject to a new page and suppress and resume
printing.

Document Formatter by David Long
DOCFOR.(S,C) = the program. Also include files DOCFORl-S, DOCFOR2.S.
DOCFOR1.T, DOCFOR2.T, DOCFOR3.T = documentation, in DOCFOR input file
format. A printed copy of this document is also included.

The document formatter provides a means of word processing in which an input
file is prepared with formatting commands imbedded in the text. The input file
is fed into the document formatter, which acts upon the commands and produces
an output file that is ready for printing.

Same purpose as previously described screen creator. This one supports color
screens, the "price" being that a screen definition requires a larger number of
bytes. Consult the source code for usage information.

Graphics routines and demo by Roger Norrod
GRAPHLIB_2.S = an include file having the graphics routines
GRDEMO.(S,C) = demo program (includes GRAPHLIB 2.5)
GRLIB_DOC.S documentation. _

Screen creator by H. A. Harsh
CONSTRUCT.(S,C) = the program

Contents of Commodore PROHAL Public Domain Disk

These routines support the high—res screen. Drawing 15 done primarily by
specifying pen moves (draw, erase, complement and "pen up"). ASCII characters
can also be generated. A screen can be stored on disk and later recalled. The
demo program gives a tour through—the features. NOTE: this package does not
use the PROMAL Graphics Toolbox, nor is it compatible with it or supported in
any way by SMA. You may wish to study the PROMAL Graphics Toolbox before
committing to a particular graphics package.

TR;(S,CT s lister program
SET_TIME.(S,C) = sets date and time
PPDL.T = documentation

First, a timer is initialized using SET_TIME (and also a date entered)
Thereafter when PR is run, the date and time is printed at the top of each
page.

C64-to-Tandy PCZ data exchange program by Steve Vermeulen
PCZ.(S,C) = the program

Files can be passed between these two computers over an RS-232 bus. The Tandy
PCZ is identical to the Sharp PC-ISOO.

"Dumb terminal" emulation routine and demo by Steve Vermeulen
DUMBTERM.S = the emulation routine, an include file
DEMOTERM.(S,C) = demo using DUMBTERM.S

DUMBTERM.S is an address—independent machine language routine coded as a PROHAL
DATA statement. DEMOTERM.C has been used to transfer data from C64 to
Harris 800 computer.

A design on the screen is constructed under control of the touchpad

File Lister for [ls-232 printer by Erik Vigmostad
PRINT3.(S,C) = the program.
RS_232.S = include file for

The input to this program is a file containing words, such as text or PROMAL
source code. The output is a list of each different word found along with the
number of times it occurred.

PRINT3.S.

A convenience for PROMAL users with RS-232 printers Without program such
this one, it is necessary to exit PROMAL and use 3 BASIC program to do file
printing

as

Counter of word occurrences in a file by Erik Vigmostad
COUNT.(S,C) = the program

ALA

KOALA touchpad support by Erik Vigmostad
KOALA.(S,C) = the program

Lister that includes time and date stamp by Hichael T. Veach
PR.(S,C) = lister program

DOCFOR 2 5 PROHAL Document Formatter
by David Long

Notes from SMA

This document formatter program is,a PROMAL implementation of a design
similiar to one given in Software Tools 13 Pascal by Kernighan and
Plauger, published by Addison-Wesley, 1981.

DOCFOR is a public domain program submitted by a user. You can freely
use and copy it. SHA serves only as a clearing house for such programs
and SKA in no way stands behind their correctness, nor does SMA provide
support for them.

You may need to modify the printer port for your particular printer
before doing underlining. See instructions in DOGFOR.S. The presently
implemented method of printing underlines consists of printing a BS and
’_’ sequence after each character to be underlined. This works-on many
printers.

The files associated with this program found on Public Domain Disk #2)
are

DOCPOR.S Source file for main program. It uses include files
D06!031.S and DOCPOR2.S

DOGPOE.C Executable version of the program.

DOCFOEl.T Documentation. These three files, when fed into DOCTOR,
DOCFOEZ.T produce a document identical to the one you are looking
DOCFOR3.T at. They illustrate the use of DOCFOR.

INTRODUCTION

This program offers a powerful and well established method of word
processing that begins with I manually created file containing text
intermixed with formatting commands.\ The manually created file, which
makes no-pretenne of looking like the final document, is fed into the
document formatter program, which acts upon the commands and produces an
output file that is in final form for printing.

A major advantage of this approach in simplicity. The input file can be
created on just about any editor, the PEOHAL EDITor being an excellent
candidate. Formatting commands are short sequences of "ordinary"
characters that are always visible. There is nothing hidden from View.
The formatting commando perform the following general functions:

Packing words together to form complete lines
Producing text with flu-h left and right margin-
Centering text on a line
Creating headers and footers, which may include a page number*Ifl’l'USING THE FORMATTER

After creating an input file, start the formatter from the EXECUTIVE by

DOCFOR Page 1 ' PROMAL Document Formatter

typing

DOCFOR input_file [output_fi}e

where input file is the name of the file to be formatted and output_file
is the name-of the file to receive the formatted text. If input_file
has no extension, a default extension of .T is assumed. If output_file
is not specified, it is taken to be input_fi1e with a .F extension. If
output file is specified but has no extension, the .F extension is
assumed.
For example

DOCFOR ESSAY

formats the file ESSAT.T and sends the output to ESSAY F. The command

DOCFOR REPORT HEMO.T

processes REPORT.T and creates HEHO.T. Frequently you will wish to
output directly to the printer. That can be done by specifying output
to "P", which in PROHAL is the printer device. For example,

FORMAT TEXI.S P

formats rsxr.s and prints the result.

FORMATTING COMMANDS

The formatting commands are placed amongst the text in the input file to
control how the text will look in the final document. Each command is
immediately proceeded by a period and starts at the beginning of a line
that contains nothing but the command and its operands. Any line
beginning with a period is interpreted as a command.

Many commands take an argument of some form. An argument is any text
following a command and aeperated from it by at least one space. There
are three types of arguments: absolute numbers, relative numbers, and
text. Absolute numbers are denoted by an unsigned integer, and are used
to set parameters to a specific value.' Relative numbers are integers
preceded by a + or a -, and are used to change a parameter relative to
its current value. If am‘argument is not in either of these classes it
is considered to be text.

For example the command

.RH 65

sets the right margin to a value of 65. The command

PROMAL Document Formatter

.TH-l

repositions the top margin one line above what it formerly was. The
command

DOCFOR

EF January Report/ZZZ Inc./New Products/

defines a page footer for even-numbered pages.

PAGE LAYOUT

Vertically, each page has seven regions: the header margin, the header,
the top margin, the page body, the bottom margin, the footer, and the
footer margin. The header margin separates the header from the top of
the page. Similarly, the footer margin separates the footer from the
bottom of the page. The top and bottom margins separate the page body
from the header and footer.

Horizontally, all text is indented to the left margin, and all text ends
before the right margin.

Here is an illustration:

Left margin Eight margin

V V
<— Top of page
<— Header margin

Page Learning PROMAL SKA, Inc <- Header
<- Top margin

The CHOOSE statment is a convenient way <- Page body

When the number of iterations is known
<- Bottom margin

0) 1985 SMA, Inc. <- Footer
<- Footer margin

<- Bottom of page

SUMMARY 2: COMMANDS

.31 Bill (default)

.NF Stop filling

.JU Justify (default)

.NJ Stop justifying

.63 Center A

.sc Stop centering (default)

.UL Underline

.NU Stop underlining (default)

.IN n Indent (set left margin to) n default

.TI n Indent an additional n on next line (default

.sa n Set right margin to n (default 60)

.TM n Set top margin to n (default 2)

.HH n Set header margin,to n (default 2)

.SM n Set bottom margin to a ’default 2)

DOCFOR Page 3 PEOMAL Document Formatter

0)

Set footer margin to n (defaultFM n
PL n Set page length to a (default 66)
L5 n Set line spacing to n (default 1 singl space)
SP n Skip n lines (default 1)
0E /lt/mt/rt/ Set odd header to text
.0? /lt/mt/rt/ Set odd footer to text
.EE /1t/mt/rt/ Set even header to text
.EF /lt/mt/rt/ Set even footer to text
.BR Break (start new line)
.BP n Begin page number n (default +1)
.6? n New page if less than n lines left (default 1
.LI n Emit literal character n (no default)

DETAILED DESCRIPTION 2: COMMANDS

.FI Bill Text

The fill text command causes the formatter to collect|as many words as
possible on each output line, i.e., words will be taken from the input
lines as needed to form an output line which is as long as possible
(without exceeding the margins). Billing defaults to "on“

For example,

.FI
The quick brown fox
jumped over
the lazy dogs.
A bird in the hand is worth two
in the bush.

produces

The quick brown fox jumped over the lazy dogs A bird in the hand
is worth two in the bush.

.NF:Stop Filling

The stop filling command causes the formatter to print each output line
with only the words on the corresponding input line. No words will be
moved off of or onto the line to make it fit the margins

For example

.21
The quick brown fox
jumped over
the lazy dogs.
.NF
A bird in the hand is worth two
in the bush. ‘

PROMAL Document Formatter Page

produces

The quick brown fox jumped over the lazy dogs.
A bird in the hand is worth two
in the bush.

Page 5 PROMAL Document Formatter

.JU:Justify Text

The justify text command causes the formatter to insert blanks in a line
in order to make a flush right margin._ Justification defaults to on.

For example,

.FI

.JU
The quick brown fox
jumped over the
lazy dogs. A bird in the
hand is worth two
in the bush.
Now is the time for all
good men to come to the aid of
their country.
We the people, in order to form
a more perfect union, establish
justice, insure domestic tranquility,
provide for the common defence, promote the
general welfare, and secure the blessings of
liberty, to ourselves and our posterity, do
ordain and establish this constitution for the
United States of America

produces

The quick brown fox jumped over the lazy dogs. A bird in the
hand is worth two in the bush. Now is the time for all good
men to come to the aid of their country. We the people, in
order to form a more perfect union, establish justice, insure
domestic tranquility, provide for the common defense, promote.
the general welfare, and secure our posterity, do ordain and
establish this constitution for the United States of America.

.NJ:Stop Justifzing

When justication is turned off, the formatter will not insert spaces in
order to make a line flush with the right.mergin. For example,

.21

.NJ
The quick brown fox
jumped over the
lazy dogs. A bird in the
hand is worth two

DOCFOR

in the bush.
Now is the time for all
good men to come to the aid of
their country.
We the people, in order to form
a more perfect union, establish
justice, insure domestic tranquility
provide for the common defence, promote the
general welfare, and secure the blessings of
liberty, to ourselves and our posterity, do
ordain and establish this constitution for the
United States of America.

produces

The quick brown fox jumped over the lazy dogs A bird in the
hand is worth two in the bush. Now is the time for all good
men to come to the aid of their country. We the people, in
order to form a more perfect union, establish justice, insure
domestic tranquility, provide for the common defense, promote
the general welfare, and secure our posterity, do ordain ant
establish this constitution for the United States of America.

.CE 2 Center Text

The center text command causes the following lines to be centered on
page. During centering, justification and filling are turned off.
Centering defaults to off.

For example,

.63
January Report
222, Inc

produces

January Report
221, Inc.

PROMAL Document Formatter Page 6

.uc:Sta! Centering

The stop centering command turns off centering of text.
justification and filling settings are restored.

For example,

.6!
January Report
ZZZ, Inc.

.nc
During the fourth quarter of last year
sales were at a record high.

Previous

.FI

.UL
This text is underlined
.NU
but this isn't.

produces

January Report
ZZZ Inc

During the fourth quarter of last year sales were at a record
high.

.UL Z Underline Text

The underline text command causes the following text (but not headers or
footers) to be underlined. Underlining is accomplished by printing an
underscore, a backspace, and then the character to be underlined.
Underlining defaults to off.

For example,

.UL
This text is underlined.

produces

This text is underlined.

.NU:Stop Underlining
The stop underlining command turns off underlining For example,

Page 7 PROMAL Document Formatter

This text ii underlined, but this isn’t.

.IN5:Indentg 2; Set Left Margin

The indent command sets the left margin for aTl text. If n is an
absolute number, the margin "ill be set to that value. If n is
relative, the.margin will be moved by a from.its present position this
is useful for indenting quotes). The margin defaults to 0 no.spaces
before text)

For example,

Shakespeare once wrote:
.IN +5
To be or not to be, that is the question.

DOCFOR

produces

PKOMAL Document Formatter Page 8

produces

Shakespeare once wrote:
To be or not to be that is the question.

.TI 3:Temporary Indent

The temporary indent command indents the next line an extra n spaces.
since the temporary indent value is set to 0 after each line, relative
and absolute numbers are equivalent. This command is usually used to
begin a new paragraph. The default value of n is 5.

For example,

.TI
Now is the time for-all good
men to come to the aid of their country.
The quick brown fox umped over
the lazy dogs.

will produce

Now is the time for all good men to come to the aid of
their country. The quick brown fox jumped over the lazy dogs.

Here is an example of .T1 in conjunction with .IN:

.IN +5

.TI -5
Once upon a time, there was a girl
named Mary who had a very small and very
white lamb.

This produces:

Once upon a time, there was a girl named Mary, who had a
very small and very white lamb.

.nn 2 1 Set Eight Margin

The set right margin command sets the right margin for all text. The
number n may be absolute or relative, and defaults to 60.

For example

.21

.RH 40
Now is the time for all good men to come to the aid of
their country.

produces

Now is the time for all good
men to come to the aid of

I: I: _-_ et Top Margin

The set top margin command sets the top margin; i.e., the margin between
the header and the page body. The number u may be absolute or relative
and defaults to 2.

For example

.m‘
produces lines between the header and page body starting with
the next page.

.HM E 2 Set Reader Margin

The set header margin command sets the margin between the top of the
page and the header. The number u may be absolute or relative and
defaults to 2.

For example,

.EH +2

produces 2 additional lines between the top of the page and the header
starting with the next page.

.BM 5 2 Set Bottom Margin

The set bottom margin command sets the margin between the page body and
the footer. The number n may be absolute or relative and defaults to 2.

For example,

produces 2 lines (the default) between the bottom of the page body and
the footer starting-with the end of this page

The set footer margin command sets the margin between the footer and the
end of the page. The number n may be absolute or relative and defaults
to 2.

For example,

.FH 3

Page 9 PROMAL Document Formatter

produce: 3 lines between the footer and the bottom of the page starting
with the end of this page.

DOCFOR

their country .

The set page length command set the total number of lines per page.
The number of actual text lines printed will be determined by this
number and the margin setting . The number n may be absolute or
relative and defaults to 66-

For example,

.PL 84

sets the length of the page to 84 lines legal size).

The set line spacing command sets the number of lines to skip between
text lines. The number n may be absolute or relative and defaults to
(single spacing).

For example

.NF

.LS 1
These lines are
single spaced.
.L5 2
These are double
spaced.

produces

These lines are
single spaced.
These are double

spaced.

;§£ E:Skip Lines

The skip lines command produces blank lines. It does not produce blank
lines past the end of a page. For example, if there are 2 lines left in
the page body and “.SP 3" i. executed, only 2 blank lines are produced.
To produce blank lines at the top of a page, use the begin page (.3?)
command, then the skip lines command. Then number n may be absolute or
relative and defaults to 1.
For example,

.NF

.LS 1
Now is the time for all good men to come
.5?
to the aid of their country.

PROHAL Document Formatter Page DOCFOR

Page PROMAL Document ,Formatter

produces

Now is the time or al good_men to come

to the aid of their country

:25 /lt/mt/rt/ 2 £55 213 Reader

The set odd header command sets the text which appears at the top of odd
numbered pages to the given text. The header is a single line, which is
given in the form of three fields, shown above as "It“, "mt" and "rt"
meaning "left text", "middle text" and "right text". The ”1t" field s
flushed left in the header, the “mt" field is centered, and the "rt“
field is flushed right.

In the above symbolism, the fields are delimited by “I". In actuality
any nonblank character except “i" can be used as the delimiter as long
as it does not appear in the text fields.

It is your responsibility to see that the three fields are not so long
as to fall on top of each other.

Whenever a "#" appears in a text field, it is replaced by the current
page number. '

For example,

.OE "January Report”zzz, Inc."2age #"
produces the following header:

January Report 222 Inc. Page 32

.OF /lt/mt/rt/: Set odd Footer

This command is identical to the preceding "set odd header" command
except that a footer is generated at the bottom of each subsequent
odd-numbered page.

.33 llt/mt/rt/;Set Even Reader

This command is ideutical to the "set odd header" command except that
th‘ header is generated on each subsequent even numbered page.

.3! llt/mt/rt/:Set Bven Footer

This command is identical to the I'set odd footer“ command except that
the footer is generated on each subsequent even numbered page.

.31 Break

The break command is used only in fill mode. It causes the output line
which is being built to be printed immediately with no further filling
and no justific tion. Many other commands, such as temporary indent
automatically cause a break

For example

.FI

.JU
Now is the
.31
to come to

produces

Now is the
to come to

time for all good men

the aid of their country.

time for all good men
the aid of their country

.BP 5:Begin Page

The begin page command causes the tormetter to begin a new page of
output. It has no effect at the top or bottom of a page. If n is
specified, it sets the number for the next page to be printed. The
number n may be absolute or relative, and defaults to +l.

For example

begins a new page if currently in a page body) and sets the page number
to 10.

.CP 5 Conditional Page

The conditional page command causes a new page if there are less than n
lines remaining on the current page. The numb_er n may be absolute or
relative and defaults to 1. It will not start a new page if the
formatter is currently at the bottom of a page.

For example

.6? 15

starts a new page if the body of the current page has less than 15 lines
left

:555:Literal character

The literal character command embeds a literal character in the output
stream. This is typically used to send a special command to the print
for something such as font selection. The number n should be an
absolute number between 0 and 255, and ASCII character number n will be
output. Note that the formatter does not take the effect of any literal

PROMAL Document Formatter Page 12 DOCFOR

prints "Slanted letters" in italics on an Epson H180 and

characters into account so a page break could result in a strange
header or footer. If you are in the middle of a page and need to skip
the footer before emitting the character, use a .BP command. If you are
at the'top of the page and need to skip the header use a

For example

.L1 27

.L1 52
Slanted letters
.LI 27
.LI 53

.LI 27

.LI 69
Emohasized letters
.Li 27

Page 13 PEOMAL Document FormatterDOCFOR

prints "‘Emphasized .ettera"' in emphasised mode on an H180.

The following is an example of a typical document designed for use
the formatter:

.EF u n_#_nn.0F nn_#_nn

.NF

.NJ
Twobit Computer Company
4321 Somewhere Drive
Nowheresville, NC 27610
.SP 2
.FI
Dear airs:
.SP
.JU
.TI
Recently, I purchased Isobit widget enchancer and
kludger (TUEAKer) for use with my Hachturbo Hypersonic
69000-e computer. After using the product for several
weeks, I ftund that it was incompatible with my
Tangledfinpers Ultracomplex File Lister with Unbelievable
Captions (SUPLUC). _
.3?
.TI
When I attempted to use the IWEAKer with my TDFLUC, I
found that the screen emitted a primordial scream, and
that the disk drives produced large amounts of fire and
red smoke. Just in case this was a fluke, I repeated the
process and obtained the same result. I suspect that
the problem is a result of my custom written Dumb Operating
System (DOS).
.5?
.II
If you have heard of a similar problem and have a fix for
it, I would appreciate receiving it (I really like the TWEAKer)
If you do not kmou of a fix, I would appreciate a refund,
in addition to $5.67 to cover the cost of a black tie (burned
by the disk drives). I realise that in the licence
agreement for the THEAKer, it says that I am your slave
for life, so I can only appeal to your humanity.
.SP 5
.NP
.NJ
.IN +A8
Joe Customer
.1! -48

PROMAL Document Formatter Page

SAY LE DOCUMENTL before and after formatting

with

Formatting the above results in the following

Twobit Computer Company
4321 Somewhere Drive
Nowheresville NC 27610

Dear sirs

Recently, I purchased a Twobit widget enhancer and kludger
(TWEAKer) for use with my hachturbo Hypersonic 69000-e computer. After
using the product for several weeks, I found that it was incompatible
with my Iangledfingers Ultracomplex File Lister with unbelievable
Captions (IUPLUG).

When I attempted to use the TWEAKer with my TUFLUC, I found that
the screen emitted a primordial scream, and that the disk drives
produced large amounts of fire and red smoke. Just in case this was a
fluke, I repeated the process and obtained the same result. I suspect
that the problem is a result of my custom written Dumb Operating System
(1305).

If you have heard of a similar problem and have a fix for it I
would alpreciate receiving it (I really like the THEAKer). If you do
not know of a fix, I would appreciste a refund, in addition to $5.67 to
cover tle cost of a. black t.ie. (burned by the disk drives I realize
that in the licence agreement for the THEAKer, it says that I am. your
slave for life, so I can only appeal ta your humanity

Joe Customer

Page 5 PROMAL Document FormatterDOCFOR

(blank lines to. bottom of page)
'-l'--

