
Because this package is not copy-protected, once the sealed disk envelope
is opened, the package cannot be returned for a refund.

SYSTEMS
MANAGEMENT
ASSOCIATES
3325ExecutiveDrive

238%fimfihl 2mma eig , or! mina
J nuary 30, 1986 Quysmeam

Dear PROMAL Owner:

Here is your new PROMAL GRAPHICS TOOLBOX Version 1.0. We are sure you
will enjoy using this software package to enhance your PROMAL application
programs with exciting graphics. Bruce Carbrey, the author of PROMAL, person-
ally designed this advanced bit-mapped graphics support system. He and
his team have implemented the package with the same standards of excellence
found in PROMAL. I know you will be pleased with their results.

You should review the GRAPHICS TOOLBOX Manual to see if the package, as
described, meets your needs and expectations. If for any reason you are not
satisfied, return the unopened diskette envelope and the manual within 30 days
for a refund.

If you do not have PROMAL 2.0 which is required for the GRAPHICS TOOLBOX,
please call us at 919-878-3600 so we can send you an upgrade disk. The charge
for upgrading to PROMAL 2.0 from any previous version is only $10.00 plus $2.50
shipping and handling.

Be sure to read the README.T file on the disk, which contains some manual
corrections and information not covered in the manual. You can print this file
from the PROMAL EXECUTIVE by typing:

TYPE README .T>P

Thank you for choosing the PROMAL GRAPHICS TOOLBOX.

Sincerely,

DEDICATED TO PERSONALCOMPUTINGPRODUCTIVITY

(Pflgramers's Eicro application Language)
THE PROMAL GRAPHICS TOOLBOX

For The APPLE IIe and 11::
-or-

COHHODORE 64

TEHS MANAGEMENT ASSOCIATES, INC.
3325 Executive Drive

Raleigh, North Carolina 27609

January 1986

Trademarks

Copyright (c) 1986, Systems Management Associates Inc. (Programs and
Manual). The programs contained herein may be used in whole or in part in
PROMAL applications programs by the original purchaser of this product only.

The PROMAL Graphics Toolbox runs on Apple lie with 80 column extended card,
or Apple lie, or Commodore 64, with PROMAL 2.0 or later software. The Apple II
version and Commodore version of the Graphics Toolbox provide a high degree of
compatibility for the user, but differ substantially internally and are sold
separately.

Apple II and ProDOS are trademarks of Apple Computer, Inc.
Commodore 64 is a trademark of Commodore Business Machines, Inc.
PROMAL is a trademark of Systems Management Associates, Inc.

The programs and manuals are provided "as is", without warranty of any kind,
either express or implied, except that:

SMA warrants the distribution diskette to be free of physical defects in
material and workmanship under normal use for a period of thirty (30) days from
delivery to you as evidenced by a copy of your purchase receipt. SMA’s entire
liability and your exclusive remedy shall be the replacement of any diskette
not meeting this warranty, by returning it postpaid to the factory.

In no event shall SMA be responsible for any indirect or consequential
damages, even if SMA has been advised of the possibility of such damages. Some
states do not allow the limitation or exclusion of liability for indirect or
consequential damages, so the above limitation may not apply to you.

Disclaimer and Notice

The right is reserved to make any changes to this publication or the product
it describes without obligation to notify any person of such revision or
changes. Because the diskette is not copy-protected, this product cannot be
returned for a refund once the seal is broken.

Limited Warranty

Hardware 5 Software Requirements

Apple II and Commodore
January, 1986

Copyright Not ice

64

PROMAL GRAPHICS TOOLBOX

TABLE OF CONTENTS

INTRODUCTION.1
What Is The Promal Graphics Toolbox?..............1
What Can You Do With The Promal Graphics Toolbox?......l
Compatibility And Graphics Modes Supported.......2
Installation......................................2
Demonstration Programs...........................2
System Components...........................3

GRAPHICS FUIDAMEITALS..........................5
Bit-Mapped Graphics And Coordinate Systems.........5
The Graphics Cursor Is Your "Pen"...........6
Using The SGD in Your Programs.......7
Memory Map and Loading Considerations.8

DESCRIPTION OF SGD VARIABLES AID SUDROUTIHBS..10
SGD Global Vsriables...................10
Coordinate Range Checking.............10
Text Output While In Graphics Mode....12
Pixel Plotting Modes..................12
Color Support (Commodore 66 Only)......12
Detailed Description Of SGD Routines..15

WINDOW GRAPHICS SYSTEM (HGS)............38
Introduction..............38
WGS Cursor................39
Using The WGS........................40
Summary of WGS Subroutines And Variables.42
Detailed Description of WGS Subroutines..42

UTILITY SUBBOUTINES..52

APPENDIX A: USER-DEFINED TEXT FONTS..........56
APPENDIX B: COMMODORE 64 SPRITE EDITOR.......57

iii

APPENDICES

(This page is intentionally left blank)

The PROMAL GRAPHICS TOOLBOX is a software package for PROMAL programmers to
use to develop high-resolution graphics application programs on the Commodore
64 or Apple lIe or Ilc computers. The toolbox provides a set of subroutines
which you can call from your PROMAL programs to draw points, lines, dashed
lines, circles and arcs, rectangles, bars, etc. In addition you can draw text
(characters) to annotate your graphics image, with text displayed horizontally
or vertically in a variety of sizes. You can fill arbitrary enclosed shapes
with a pattern, such as cross-hatching. Images or portions of images can be
extracted from the screen and moved to other areas of memory, so that programs
can save, restore, or print images. Figure l is a sample of the kind of
graphics image that can be produced using the PROMAL GRAPHICS TOOLBOX. The
complete source program used to produce this image is file SALESDEMO.S on the
distribution diskette.

all
4

(DA

Salesx $i8fi,BBB
N

Figure 1: Sample Plot

WHAT CAN YOU DO WITH THE PROMAL GRAPHICS TOOLBOX?

The toolbox provides the primitive functions you need for almost any kind of
graphics display. You can write programs to display:

Bar charts
Pie charts
Point plots, scatter plots
Curves and curve fitting
Engineering drawings
Games and animation

Maps
Scientific and statistical functions
Geometric shapes
Musical scores
Interactive drawing packages
More use your imagination!36*X-I-3l-I- x-x-a-a-a-a-

Copyright (C) 1986, SM, Inc.

WHAT IS THE PROM]. GRAPHICS TOOLBOX?

INTRODUCTION

GRAPHICS TOOLBOX SYSTEMS HANAGEHENT ASSOCIATES, INC.

Despite the fact that the underlying graphics hardware on the Apple and
Commodore 64 differs greatly, the PROMAL GRAPHICS PACKAGE provides a very high
degree of compatibility for source programs. Therefore you will usually not
need to make any significant changes to your graphics application program when
”porting" your program between these machines.

The PROMAL GRAPHICS TOOLBOX for the Commodore 64 supports 16 colors in high
resolution, 320 by 200 mode. The Apple II version ignores color information
because the Apple ii does not have a high-resolution graphics mode. Instead,
the Apple version supports the standard high-resolution monochrome 280 by 192
mode. Apple color mode is not supported because the resolution is too limited
for the kinds of applications the PROMAL GRAPHIC PACKAGE is intended for

No special installation is needed for the PROMAL GRAPHICS TOOLBOX. For
safety, we suggest that you promptly make a backup copy of the distribution
disk and keep the original in a safe place. Simply copy the files you need on
to any working disks you wish when you develop your application program. If a
file called README.T is present on your disk, please TYPE it. It will contain
additional information not included in this manual.

Before studying the PROMAL GRAPHICS PACKAGE in detail, you may wish to run
couple of the demo programs provided on the distribution disk, to get an idea
of what kind of results you can expect from your programs. Boot up PROMAL 2.0
(or later) in the usual way using one of your working disks. Then put the
Toolbox disk (or better, a copy of the Toolbox disk) in the drive and type:

PREFIX * UNLOAD
BUFFERS ”IRES BOOTW SALESDEMO
BOOTH SALESDEMO

This will display an Image similar to Figure 1. When the display is
completed, press RETURN to exit back to the EXECUTIVE. The distribution disk
contains the complete source code for this program, so you may study it later
if you wish.

An interesting interactive drawing program is SKETCH, which lets you draw
lines, rectangles, circles, text, and fill enclosed areas with patterns. To
run SKETCH, type:

UNLOAD SALESDEMO
BOOTH SKETCH

Copyright (c) 1986, SHA, Inc.

BOOTH SKETCH

Apple ii Commodore 6lo

Apple II Commodore 64

DEMONSTRATION PROGRAMS

INSTALLATION

COMPATIBILITY AND GRAPHICS MDES SUPPORTED

SYSTEMS MANAGEMENT ASSOCIATES, INC. GRAPHICS TOOL BOX

You will see a rectangular piece of "paper" for you to draw on in the center
of the screen, with a blinking cross in the center. This is your "pen"
position. You can move the "pen" by using the 1, j, k, and m keys on the
keyboard, as shown on the screen. Notice that these four keys form a "cross“
on the keyboard indicating which direction the "pen" will move. Holding down
the SHIFT key while pressing these movement keys will make the "pen" move
faster. Pressing the RETURN key will "anchor" the pen at the current point.
Using the movement keys will then draw a "rubber band line“ which you can move
around until you get it where you want it. Then press RETURN again to "freeze"
the line on the screen. You may draw any number of lines in the same manner.
Note that if you place the "rubber band" line over an existing line, the
existing line will be temporarily "flipped" to make it invisible. This is
normal, and the line will re-appear when you press RETURN or move the rubber
band line elsewhere. You can move your anchor point by pressing the space bar.

You can use the function keys (Apple key with a number key on the Apple) to
select other shapes, as indicated. Once you have selected "text", you can move
to where you want the first letter and then press RETURN. Then type in
normally. The backspace (or delete) key can be used to "undo" mistakes.

By pressing a number key, you can choose one of the pre-defined patterns to
fill an area with. Move the cursor to the inside of an enclosed shape and
press RETURN to fill the area. Caution: If you fill a shape that is not
completely enclosed, the fill will “spill out" and fill up the whole screen.
Also be careful not to try to fill an area that has already been filled.

The legends on screen indicate a key that can be used to “UNDO”. This will
restore the screen to the way it was before the most recent command (a command
is defined as all the drawing done since the last function key was pressed).

To exit the program, press Q (for quit). The complete source program for
the SKETCH demo is provided on the distribution diskette. You may wish to
study or modify it after you have read this manual.

SYSTEM COMPONENTS

The PROMAL GRAPHICS PACKAGE is supplied in two main parts: The Screen
Graphics Drivers (SGD) and the Window Graphics System (WGS). The SGD is a
collection of very-high-performance, machine language subroutines, totaling
about 4.5K bytes in size, callable from your PROMAL application program. The
SGD provides the graphic "primitives" for drawing points, lines, etc. on your
screen. Coordinates are given in terms of the X and Y locations of the pixels
(dots) on your screen. The SGD subroutines are fast enough to perform some
animated effects in high resolution mode, a considerable achievement for
hardware in the Commodore/Apple class.

Copyright (C) 1986, SMA, Inc.

.-.. ..-—......J --.... -.--..“

GRAPHICS TOOLBOX SYSTEMS MANAGEMENT ASSOCIATES, INC.

The WGS provides a group of higher-level subroutines written in PROMAL,
provided both in source and pre-compiled form. These subroutines can be called
from your PROMAL application for more sophisticated functions. In particular,
the NGS provides support for multiple graphics windows on the screen. With
windows, information to be plotted can be described in an arbitrary (X,Y)
coordinate system, with automatic scaling to fit in a specified rectangular
"viewport" on the screen. Lines are automatically "clipped" at the boundaries
of the window, making it easy to write applications which need to "zoom" in to
show part of a larger image.

Please note that the term "windows" as used here refers to traditional,
display graphics oriented windows. The PROMAL GRAPHICS TOOLBOX does not
directly support "pull down windows" for text, nor does it directly support a
mouse or other graphics input devices. Also it does not directly support
sprites on the Commodore 64, although you can program sprites directly using
PROMAL in high resolution mode in conjunction with the PROMAL GRAPHICS PACKAGE,
and a Sprite Editor is included on the distribution disk, to make it easy to
create sprites.

In addition to the SGD and WGS, a number of graphics utility subroutines are
provided on disk in PROMAL source form, which you can include in your program
where needed. Included are subroutines for saving and restoring images or
parts of images to memory or disk files, printing images, etc. You can easily
modify these subroutines to meet any special needs you have.

The following pages explain how to use the PROMAL GRAPHICS TOOLBOX in your
own PROMAL application programs. This manual assumes you already have a good
working knowledge of PROMAL and your computer.

Copyright (C) 1986, SEA, Inc.

SYSTEMS MANAGEMENT ASSOCIATES, INC. GRAPHICS TOOL BOX

BIT-HAPPED GRAPHICS AND COORDINATE SYSTEMS

In normal, "text" display mode, the Apple II or Commodore 64 map a portion
of memory onto the screen, with each byte of display memory representing one
character position on the screen. Thus 1000 bytes are used on the 40x25
Commodore Screen, and 2000 bytes on the 80x25 Apple 11 screen. The actual
conversion from a character code in memory to a pattern of dots on the screen
recognizable as a character is done by hardware.

By switching to graphics mode, the normal text display is no longer visible
on the screen. Instead, A different, larger area of memory (about 8K bytes) is
mapped onto the screen, with each bit of this memory area controlling a single
dot on the screen. These dots are called pixels (short for "picture
elements"). Setting a bit to 1 in this display memory causes the corresponding
pixel on the screen to be shown as a foreground (bright) dot on the screen.
Setting the bit to 0 causes the pixel to be turned off (to the background
color). This is called bit-mapped graphics.

The reason a larger area of memory is needed for displaying graphics
information is that a single byte of memory can only control at most 8 pixels
on the screen. In text mode, a single byte controls about 48 to 64 pixels,
depending on the format of displayed characters. For example, the Commodore
displays a character in a 8 pixel by 8 pixel cell. The advantage of bit—mapped
graphics mode is that you can display any pattern of dots on the screen, not
just the characters defined by your computer’s hardware.

The term resolution is used to describe the total number of pixels which are
individually recognizable on your screen. The more pixels, the higher the
resolution is. Computers with more pixels have a better quality display
because detail can be more accurately represented. This is illustrated by
Figure 2, which represents a small portion of two bit mapped displays. The one
at the right has four times as many pixels (better resolution) as the other.
If we try to draw a diagonal line shown, the best we can do is to turn on the
pixels which best approximate the true line, as shown. Notice that the
approximation on the right looks better because the larger number of pixels
reduces the "stair step" effect.

Figure 2: Diagonal Line at Different Resolutions

Copyright (C) 1986, SBA, Inc.

GRAPHICS FUNDAHENTALS

GRAPHICS TOOLBOX SYSTEMS MANAGEMENT ASSOCIATES, INC.

If you want to draw a line in graphics mode, you need to turn on the pixels
which best approximate the line. Deciding which pixels these are and which
hits in memory represent them is a non-trivial task, and is one of the most
important functions performed by the SGD (Screen Graphics Drivers) of the
PROMAL GRAPHICS TOOLBOX. In order to refer to pixels, we need a way to
identify them. For the PROMAL GRAPHICS TOOLBOX, we use a simple traditional
rectangular coordinate system. Dots on the screen have an X coordinate
numbered from left to right and a Y coordinate measured from bottom to top.
The notation (X, Y) is used to identify the coordinate of a particular pixel.
For example, (0, O) is always at the extreme lower left hand corner of the
screen. (2, 7) is the third pixel to the right and the eighth pixel up.

[279,191 (319,199)

apple Commodore

[6,6] (8,8)

Figure 3: Screen Coordinate Systems

For the Apple, the upper right hand corner of the screen is at (279,191).
For the Commodore 64, it is at (319,199), as shown in Figure 3.

Please note that for the SGD subroutines, coordinates are expected to be
INTegers (although BYTE or WORD coordinates are also acceptable). You may not
specify coordinates for the SGD subroutines as REAL! If you do, it will not be
detected as a compilation error, but will produce very strange results.

THE GRAPHICS CURSOR IS YOUR "PEN"

The SGD works in terms of an imaginary "pen" called the graphic cursor which
is always somewhere on the screen. Unlike the text cursor, the graphics cursor
is invisible. To draw a line, you love the graphic cursor to the desired
starting point and then draw from there to the desired ending point. For
example:

S_MOVE 50,3o
S_DRAW 150,30

Copyright (C) 1986, SMA, Inc.

SYSTEMS MANAGEMENT ASSOCIATES, INC. GRAPHICS TOOL BOX

This draws a horizontal line on the screen from (50,30) to 150,30)
(Note: you would actually have to do some initialization first to enable
graphics mode, which we have not discussed yet). S_hOVE and S_DRAW are
procedures in the SGD. All procedure and function names in the SGD start with
"S_f for easy recognition. After the line is drawn, the "pen" remains where it
finished (at (150,30). You could complete a 100 by 60 pixel rectangle by
adding:

s_mmw 150,90
S_DRAW 50,90
S_DRAW 50,30

The globally predefined variables S_X and S_Y contain the current value of
the graphics cursor. The SGD subroutines automatically update the values of
S_X and S_Y. You can directly set the values yourself too. For example:

S_X 125
S_Y

is equivalent to:

S_hOVE 125,44

The cursor is very important. The cursor represents the starting point for
almost all SGD operations.

USING THE SGD IN YOUR PROGRAMS

As was mentioned in the introduction, the SGD (Screen Graphics Drivers) is a
relocatable machine language module containing subroutines for performing the
fundamental graphics operations. The subroutines in the SGD are summarized in
Table 1. You can call these subroutines directly from your PROMAL application
program. In addition, the WGS subroutines and other utility subroutines call
the SGD. The SGD subroutines will be explained in detail in the following
section. The WGS and Utility subroutines will be described later.

The skeleton program below shows how you need to set up your program to use
the SGD subroutines:

PROGRAM HASGRAPH OWN

INCLUDE LIBRARY

BEGIN

;...Call Graphics Routines as Desired Here.

END

Copyright (C) l§§3, SIM, Inc.

INCLUDE SGD.B

s_nlrr

GRAPHICS TOOLBOX SYSTEMS MANAGEMENT ASSOCIATES, INC.

(0,0).

8 SYSTEMS MANAGEMENT ASSOCIAINS, INC. GRAPHICS TOOL BOX

Table 1
Summary of SGD Subroutines

Name Description

S_1NIT initialize graphic system, clear screen, enable graphics
mode.

S_FLEAR Clear the screen and move the graphic cursor to .
S_DOT Draw (or erase or flip) a single pixel.
S_NOVE Move the graphic cursor to a new coordinate.
S_DRAW Draw a line.
S_?LOT Draw, erase, or flip a line or dashed line.
S_NELPLOT Draw, erase, or flip a line or dashed line using relative

coordinates.
S_TEXT Draw text characters.
S_NECT Draw (or erase or flip) a rectangle.
S_bAR Draw, erase, or flip a filled rectangular area.
S_fiND Exit from graphics mode, restore normal text screen.
S_9ETDOTS Move a row of dots from the screen to an array.
S_PUTDOTS Move an array to a row of dots on the screen.
S_XYADDR Compute the address of a specified pixel.
S_FILL Fill an enclosed shape with a pattern.
S_CRAPHON Re-enable graphic mode.
S_ARC Draw (or erase or flip) a circle or octant of arc.
S_§HAPE Draw (or erase or flip) a figure from a shape table.

In order to use any graphics, you must have the INCLUDE SGD.E declaration.
This makes all the definitions of the SGD subroutines (and variables) known to
the compiler.

Next, before using any other graphics subroutines, you must call S_iNIT.
This subroutine initializes the graphics system, sets the graphic cursor to
(0,0), clears the graphics screen and enables graphics mode. You may then call
any graphics subroutines, such as S_NOVE and S_DRAW, to display your desired
graphics image. These subroutines are described in detail in the following
sections. Finally, you should call S_fiND to disable graphics mode and return
to text mode.

MEMORY MAP AND LOADING CONSIDERATIONS

Graphics programs require some special considerations. First, you need to
insure that the 8K byte high resolution display memory is properly allocated.
0n the Apple 11, there are two possible hi-resolution screen memory

locations: $2000 and $4000. Normally, the SGD will use the display memory at
$2000. Since the PROMAL runtime package and ProDOS buffers normally extend all
the way up to $2900, you need to issue a DUFFNIS Hills command from the
EXECUTIVE before running your graphics program. This alters the PROMAL memory
map, reserving 8K bytes at $2000 for display memory.

NOTE: 0n the Apple ii, after a BUFFERS “IRES command, you will not be able

Copyright (c) ENG, SMA, Inc.

to run the compiler again until you reclaim the 8K display memory by typing a
BUFFERS 3 command from the EXECUTIVE.

On the Commodore 64, the SCD will put the 8K byte display memory at $A000,
and will put the 1K "color matrix" at $8600. This arrangement leaves a fairly
large area ($5100-83FF) available for your program. However, it also means
that the display memory will overlay the EDITor. Therefore if you EDIT after
running a graphics program, the EDITor will be reloaded from disk. If you’ve
been following this closely, you may wonder why there is an unused 4K "hole" in
from $9000-9FFF. This space cannot be used for display memory (or for the
color matrix) because the VIC video controller "sees" the ROM character fonts
at this location and cannot use this memory. However, you can freely use this
4K hole for your own purposes. As you will see later, it may be put to good
use as buffers for saving parts of images, alternate character fonts, as a fill
buffer for cross-hatching, etc. No special commands are needed on the
Commodore to prepare for a graphics program. Also, you should have OWN on the
program line (otherwise, your variables may wind up allocated in screen memory
on the Commodore 64!).

On either computer, you will need to load the SGD into memory before
executing your program. You could write a "bootstrap" program to load the SGD
and your program, as described in the LOADer section of the PROMAL manual. For
convenience, two bootstrap programs are included on the TOOLBOX disk. BOOTS
will load the SGD and then run any program given as its argument. BOOTW will
load the SGD, WGS, and the named program. For example:

UNLOAD
BOOTS MYGRAPH

will load the SGD and execute the program MYGRAPH.C.

Copyright (C) l§§6, SKA, Inc.

GRAPHICS TOOLBOX SYSTEMSWIT ASSOCIATES, INC.

The SGD defines certain global variables which control the way the graphics
operations are performed, or reflect the current state of graphic operations.
These variables are automatically defined when you have the statement INCLUDE
SCD.E in your programming. The most important of these variables are S_X and
S_Y, which are the coordinates of the graphics cursor. The SGD global
variables are summarized in Table 2. The purpose and use of these variables
will be described where appropriate in the following sections

COORDINATE RANGE CHECKING

The S_INIT subroutine sets the global variables S_xMAX and S_YMAX to the
highest pixel coordinate allowed by the high resolution graphics mode and sets
the global range checking flag, S RANGECHK, to TRUE. Thereafter, any SGD
subroutine will validate the coordinates before performing the requested
graphic function. This is important, because if you accidentally specify a
coordinate which is off-screen with range checking disabled, other areas of
memory besides display memory will be affected, possibly crashing your program
or the system.’ With range checking enabled,the SGD does not perform true
"clipping" of coordinates, but simply forces the coordinates into range by the
following simple algorithm:

IF 3 x <
sj=o

IF 5 x > s-_xmx
= S_XMAX
Y < o

s__ = 0
IF S_Y > S_YMAX
S_Y = S_YMAX

IF m an 'acl

You can disable range checking by setting S_EANGECHK to FALSE, which will give
a slight increase in drawing speed, especially for points and arcs. However,
this is not recommended unless absolutely necessary.

If your graphics program behaves unexpectedly and draws a lot at the extreme
ends of the screen, it may mean you have specified coordinates out of range,

are being forced to the limits of the display.

Copyright (C) 1986, SEA, Inc.

DESCRIPTION OF SGD VARIABLES AND SUBBOUTINES

SYSTEMS MANAGEMENT ASSOCIATES, INC. GRAPHICS TOOL BOX

INT

WORD

GRAPHICS TOOLBOX ' SYSTEMS MANAGEMENT ASSOCIATES, INC. 11

Table 2
SGD Global Variables

Variable Name Type Description

S_X INT Current X pixel coordinate of cursor, to S XMAX.
S_Y , INT Current Y pixel coordinate of cursor, to S:YMAX.S_XMAX INT Maximum allowable X pixel coordinate; Set by

S_INIT to 279 for Apple or 319 for Commodore 64.
S_YMAX Maximum allowable Y pixel coordinate. Set by

S_INIT to 191 for Apple or 199 for Commodore.
S_pASHPIC. Current dash pattern template used for drawing

dashed lines. Each 1 bit corresponds to a pixel
which should be "on"; each 0 bit a pixel "off".

S_NODE BYTE Code for current default "pen" mode. 0=move,
l=draw, =erase, 3=f1ip (reverse current state),
4=dashed line using S_PASHPIC (where applicable).

S_EANGECHK BYTE Flag, initialized to TRUE by S_INIT. If set to
disables range checking for coordinates (not
recommended except where essential for speed).

S_ERPAGE BYTE High order 8 bits of the address of the base of the
display memory. Initialized by S_INIT to $20 for

‘ the Apple and $A0 for the Commodore 64.
S_FONT Pointer to the current character font table used by

S_TEXT. Initialized by S_INIT to point to the
default ASCII 5x7 font.
Current foreground (draw) color. Ignored on Apple,
Initialized by S_INIT to the current text color on
the Commodore 64.

S BACKCOLOR BYTE Current background (erase) color. Ignored on
_ Apple, Initialized by S-INIT to the hardware

background color on the Commodore 64.
S_NASK BYTE Bit mask returned by procedure S_XYADDR to extract

a pixel from screen memory.

Notes for Table 2:

l. The variables S XMAX and S_YMAX should be considered "read only" (that
is, you should not alter the values). The value of S_ERPAGE can, with care, be
changed to cause drawing on a non-visible 8K chunk of display memory.

2. The SGD uses memory locations $0334 through $039F inclusive on both the
Apple II and Commodore 64. You should not use this area for any other purpose
if you are going to use the PROMAL GRAPHICS TOOLBOX.

Copyright (C) 1986, SHA, Inc.

S_FORECOLOR BYTE

WORD

COLOR SUPPORT (COMMODORE 64 ONLY)

TEXT OUTPUT "NILE IN GRAPHICS MODE

It is important to understand that while in graphics mode, ordinary
output (using PUT or OUTPUT, for example) will appear on the screen. instead,
you may use the S_TEXT procedure to display strings of characters on the
screen. However, you may continue to use normal PUT and OUTPUT statements
while in graphics mode; when you execute an S_END or exit or abort the program,
the normal screenywill be re-displayed along with any accumulated output. This
is often useful for debugging purposes. You may also switch back and forth
between text and graphics modes without clearing the graphics screen by calling
S_END and S_CRAPHON.

In particular you should remember that the GETC function always echoes
characters to the text screene Therefore if you use GETC to get keystrokes
while in your graphics program, you will see the result on the screen when you
exit graphics mode. If this is undesirable, you may want to use function
TESTKEY instead, which does not echo keystrokes. For example:

BYTE KEY

BEGIN

WHILE TESTKEY(#KEY) O ; Wait for keystroke, save it in KEY.
NOTHING

See the description of S_TEXT for more information about displaying text in
graphics mode.

PIXEL PLOTTING MODES

Most SGD subroutines draw on the screen have an optional Mode byte,
which is used to select how the pixels involved should be affected. Legal
values for Mode are described in Table 3.

The PROMAL GRAPHICS TOOLBOX supports 16 color graphics on the Commodore 64.
The present Apple implementation does not support color because the Apple does
not have adequate resolution in the color mode. The color variables may be set
on the Apple version, but will be ignored. The rest of this section pertains
to the Commodore.

When drawing on the screen, the color for pixels turned on (1) will be the
color set in S FORECOLOR, and the pixels turned off (0) will be the color set
in S BACKCOLORT You may freely alter the values of these variables to change
the chlor of your "pen" and "paper". The allowable values are given in Table
4.

Copyright (C) 1986, SKA, Inc.

which

SYSTEMS MANAGEMENT ASSOCIATES, INC. GRAPHICS TOOL BOX

GRAPHICS TOOLBOX SYSTEMS MANAGEMENT ASSOCIATES, INC. 13

Mode

Table 3
Values for MODE

Meaning

change in the display; however the graphics cursor
location is updated.
Draw. Normal plotting mode. The affected pixels will be set to 1
in display memory, causing them to appear as bright spots on the
screen. It is okay to draw a pixel that is already set to l.
Erase. The affected pixels will be set to 0 in display memory,
causing them to appear as dark (background) spots on the screen.
It is okay to erase a pixel that is already set to 0.
Flip. The affected pixels will be reversed. Pixels which are
presently 1 will be set to O, and pixels which are 0 will be set
to 1. Flip mode has the important attribute that performing a
flip of any group of pixels twice will return them exactly to
their original state. Thus it is possible to draw a line in flip
mode across some existing graphics, and draw it again in flip mode
to remove the line, regardless of what the line crosses. See the
description of S_PLOT for more information.
Dashed line. This mode is not available for plotting points,
circular arcs, or characters. In dashed mode, some of the
affected pixels are drawn and some are erased, corresponding to
bits in the global variable S_DASHPIC. S_DASHPIC defines a 16 dot
pattern, which will be copied and repeated as the line is drawn.
See S_PLOT for more information about dash mode.

Table 4
Commodore 64 Colors

= Black 8 = Orange
1 = White 9 = Brown
2 = Red 10 = Light Red
3 = Cyan 11 = Gray 1
4 = Purple 12 = Gray 2
5 = Green 13 = Light Green
= Blue 14 = Light Blue

7 = Yellow 15 = Gray 3

Copyright (C) 1986, SMA, Inc.

Move. No

"I---'f

f‘

The S_INIT procedure initializes S_TORECOLOR to the current text color, and
S_BACKCOLOR to the text screen background color. The S_CLEAR procedure clears
the screen by setting the entire background to S_BACKCOLOR.

It is important to understand that the Commodore 64 hardware cannot control
the color of individual pixels on the screen. Instead, the screen is divided
up into 1000 square regions of 8 pixels by 8 pixels each. The color of each
region is controlled by a byte in a 1000 byte array called the Color Matrix, at
address $8C00. Each block of 64 pixels can have any foreground color and
background color, but all the pixels in the block have the same color choices.
With the PROMAL GRAPHIC TOOLBOX, anytime you draw any pixel in one of these
blocks, it automatically changes the foreground and background color of all the
pixels in the block to the current colors. ‘Therefore it is generally best to
use different colors only in different areas of the screen. Otherwise, you may
get some unexpected results. For example, suppose you draw two crossed lines,
one blue and one yellow, like this:

S_BACKCOLOR=0 ; Black
5 FORECOLOR=6 ; Blue
s‘novr 0,164
8:DRAW 31,164 ; Horizontal line
5 FORECOLOR=7 ; Yellow
s‘aovr 18,152
5:DRAW 18,174 ; Vertical line

The result will be a blue horizontal line with a short yellow section at the
crossing point, and a completely yellow vertical line. A magnified view of the
pixels at the cross point is shown in Figure 4, showing the effect of the 8 by
8 color grid. .This limitation of color has nothing to due with PROMAL or the
GRAPHICS TOOLBOX; it is a hardware limitation of the Commodore 64.

Also, only certain color combinations will provide adequate contrast.
Please see page 152 of the Commodore 64 Programmer's Reference Guide for more
information. A black background will give you the widest choice of colors.

Blue

Yellow

Figure 4: Commodore 8x8 Color Grid Effect

Copyright (C) 1986, SKA, Inc.

SYSTEMS MANAGEMENT ASSOCIATES, INC. GRAPHICS TOOL BOX

noc S_INIT

DETAILED DESCRIPTION OF SGD SUBBOUTINES

The following section describes the individual SGD procedures and functions
in detail, with simple examples. The notation follows the same conventions as
the PROMAL Language Manual; in particular, arguments shown in square brackets
are optional.

INITIALIZE SCREEN GRAPHICS

AGE:

S_INIT [Deferred]

DESCRIPTION:

S_iNiT initializes the PROMAL Screen Graphics Drivers, sets the SGD global
variables to their default values, and normally clears the screen and enables
high-resolution graphics mode. However, if the optional BYTE flag variable
Deferred is specified as TRUE, then S_lNIT will not clear the screen or enable
graphics mode. Normally, the Deferred argument is omitted.

S_IKIT must be called before using any other graphics subroutine. Failure
to do so will result in strange behavior and may cause a system crash.

EXAMPLE:
PROGRAM GRAPHIT
INCLUDE LIBRARY
iNCLUDE $00.5

BEGIN
S_INIT

S_END

END

1. Setting the Deferred flag is useful when you wish to prepare a graphics
image before displaying it. In this case, use 8 INIT TIDE, and then call
5 CLEAR and draw your graphics in the usual manner. When you are ready to
display your image, call S_CRAPHON.

2. For the Apple 11, you can use the Deferred form to select the alternate
display page ($9000) and/or to select mixed text and graphics mode (in mixed
text and graphics mode, the bottom 4 lines of the text screen replace the
bottom of the high-resolution screen image). These cases are outlines below:

Copyright (C) 1986, SHA, Inc.

OWN

GRAPHICS TWLBOX SYSTEMS MANAGEMENT ASSOCIATES, INC. 15

PROGRAM ALTPAGE
INCLUDE LIBRARY
INCLUDE SGD.E

EXT BYTE sw_TACE2 AT $C055

BEGIN

S_lNIT TRUE
S_RRRACE=$40
sw_RAGE2=TRUE
S_CLEAR
S_CRAPRON

S_END

PROGRAM MIXEDTEXT
INCLUDE LIBRARY
INCLUDE SGD.E

EXT BYTE sw_MIXED AT $c053

BEGIN

S_INIT TRUE
sw_MIXED=TRUE
S_CLEAR
S_CRAPEON

S_END

END

One advantage to using the Apple display memory at $4000 instead of $2000 is
that you don't have to perform a BUFFERS HIRES command. However, you will have
to write your own bootstrap loader for your graphics application, taking care
that you only load programs between $2900 and $3FFF and above $6000, not
between $4000 and $5FFF.

ENABLE GRAPHICS DISPLAY MODE

S_GRAPl-ION

DESCRIPTION:

S_CRAPHON enables the graphics display hardware and disables ordinary text
display mode. It is normally used after a deferred S_INIT, when it is desired
to complete the drawing of an image before displaying it. S_CRAPHON is also
used to re-enable a'graphics display without clearing the screen after calling
S END.

Copyright (C) 1986, SIIA, Inc.

PROC S_Gmuon

END

Selecting the $4000 page Selecting mixed text and graphics

SYSTEMS MANAGEMENT ASSOCIATES, INC. GRAPHICS TOOL BOX

EXAMPLE:

PROGRAM GRAPHIX
INCLUDE LIBRARY
INCLUDE SGD-E

BEGIN
S_INIT

S_END . ; Back to text mode

S_CRAPHON ; Re—enable graphics mode

S_END
END

NOTES:
1. the notes for S_lNIT for additional usage examples.

CLEAR HI—RESOLUTION SCREEN

USAGE:

S_CLEAR

DESCRIPTION:

Procedure S_CLEAR clears the entire high-resolution graphics display by
writing zeros into all of graphic memory, starting at the location specified by
S_HRPAGE (which is initialized by S_INIT). It is not necessary for graphics
mode to be enabled to clear the screen.- However, S_INIT must be called prior
to this (or any other) subroutine. S_INIT calls S_CLEAR internally unless the
DEFERRED flag is specified as TRUE.

EXAMPLE:

PROGRAM GRAPHIX OWN
INCLUDE LIBRARY
INCLUDE SGD.E

BEGIN
S_INIT

S_pRAW X, Y

S_CLEAR Clear the screen

S_END
END

NOTES:

Copyright (C) 1986, SMA, Inc.

PROC S_CLEAR

GRAPHICS TOOLBOX SYSTEMS MANAGEMENT ASSOCIATES, INC. 17

1. To only clear a portion of the screen, use S_BAR with mode-erase (see
S_BAR for details).

S_END

DESCRIPTION:

Procedure S_END disables high-resolution graphics mode on your computer and
re-enables the normal text display. When the text display is re-enabled, any
output which was generated while graphics mode was enabled (or before) will be
made visible. S_END does not erase graphics memory or otherwise alter the
global graphic variables, so you may re-display graphics information again by
simply calling S_GRAPHON. You may also continue to use graphics calls after
calling S_END; the graphics will be performed, but of course will not be
visible until you call S_GRAPHON.

EXAMPLE:

PROGRAM GRAPHIX OWN
INCLUDE LIBRARY
INCLUDE SGD-E

BEGIN
s_INIT

S_END
PUT NL,"We re back in normal text mode now

END

NOTES:

1. Although the EXECUTIVE will automatically disable graphics mode when
your program exits to it, you should call S_END before your program exits, so
that if you decide to run your graphics program from another program using the
LOADer, it will not leave your program "hung up" in graphics mode.

Copyright (C) 1986, SMA, Inc.

DISABLE HIGH-RES GRAPHICS MODEPROC S_EN'D

SYSTEMS MANAGEMENT ASSOCIATES, INC. GRAPHICS TOOL BOX

PLOT A SINGLE DOT

USAGE:

S_DOT x, Y ,Mode]

DESCRIPTION:

S_DOT plots 3 single dot (one pixel) on the high resolution screen, at
screen coordinates (X, Y). .X and Y are INTeger values (but BYTE or WORD
expressions may also be used). Mode is an optional BYTE argument, defaulting
to the current setting of S_MODE. Allowable values for Mode are 0 (ignore), 1
(draw), 2 (erase) and 3 (flip). Since S_INIT sets the value of S_MODE to I
(draw), the default mode will normally be draw unless you have altered the
global variable S_MODE. After the call to S_DOT, the graphic cursor will be
set to (X, Y).

EXAMPLE:

PROGRAM GRAPHIX
INCLUDE LIBRARY
iNCLUDE SGD.E

INT XLOC
INT YLOC

BEGIN
S INIT
S_POINT 20,40 Draw dot at x=20, Y=40
S_DOT S XMAX—lO, S_YMAX-lO ; Draw dot 10 from upper R.H. corner
S—DOT S_X, S Y, 2 ; Erase the dot we just drew
bec = 6 ‘
YLOC = S_YMAX
S_DOT XLOC, YLOC, 3 Flip a dot at upper left hand corner

5 END
END

Copyright (C) 1986, SMA, Inc.

OWN

GRAPHICS TOOLBOX SYSTEMS MANAGEMENT ASSOCIATES, INC.

PRoc S_DOT

l9

SYSTEMS MAMGEMENT ASSOCIATES, INC. GRAPHICS TOOL BOX

limo s_PLOT jPLOT A LINE

USAGE:

S_PLOT x, Y [,Mode]

DESCRIPTION:

S_PLOT is the fundamental line drawing subroutine for the PROMAL GRAPHICS
TOOLBOX. It plots a line from the present graphic cursor location, (S_X, S_Y)
to (X, Y). X and Y are INTegers (BYTE and WORD expressions are also
acceptable)._ After it is finished the graphics cursor will be updated to (X,
Y). Mode is an optional BYTE argument defaulting to the current value of
S_MODE. Since 5_MODE is initialized to l by S INIT, the normal default mode
will be draw mode. Legal values of Mode are 0(move), I (draw), 2 (erase),3
(flip) and 4 (dashed). if dashed mode is selected, the current value of
S_DASHPIC will be used for the pattern (described below).

Notice that because S_X and S_Y are set to the value of X and Y before
S_PLOT returns, it is easy to draw a series of connected line by only
specifying the new endpoint coordinates rather than both endpoints.

EXAMPLE:

PROGRAM GRAPHIX
INCLUDE LIBRARY
INCLUDE SGD.E

INT XX
INT YY

BEGIN
S INIT
S—X=20 ; Move cursor to (20,30)...
s:y=30
S PLOT 50,30 Draw triangle...
S_PLOT 1+0,1.5
S_PLOT 20,30
IE TOUPPER(GETC)=’E’ ; E Key pressed?
S PLOT 50,30,l ; Erase the triangle
s:PLOT 40,45,1s PLOT 20,3O,1

5 MOVE 100,100
s:DASUPIC = $AAAA Alternating on-off dot pattern
S_PLOT 200,100,4 , Draw a horizontal dashed line
S_END
END

NOTES:

1. When plotting lines, the dot at the graphic cursor is always plotted,
and so is the dot at the specified endpoint X,Y. Therefore:

Copyright (C) 1986, SMA, Inc.

Figure 5: Sample Dashed Line Patterns

S_MOVE 0,0
S_PLOT 2,0

will turn on a total of 3 pixels (at X=0, X=1, and X=2) not just two pixels.
This is particularly important when using flip mode. For example, if you plot
a rectangle in flip mode on a clear screen, the dots at the corners will not be
visible when the figure is finished, because each corner pixel gets flipped on
when it is the endpoint and then gets flipped back off when it is the starting
point of the next side. If you plot a single point, however, using:

S_PLOT S_X, S_X, 3

the dot will be visible because it will be flipped only once.

2. For Hode=4, a dashed line will be drawn using the 16 bits of S DASHPIC
as the template. Dashed lines are drawn by using the most significant bit (bit
15) of S_DASHPIC for the first pixel drawn, the next most significant bit for
the next pixel, etc. After 16 pixels, the pattern repeats. Sample S_pASHPIC
values and the resulting lines are shown in Figure 5. Dashed lines cannot be
drawn in flip mode. The default S_DASHPIC initialized by S_lNIT is $FOF0,
which produces alternating segments of 4 dots on and A dots off. Plotting a
dashed line with S_pASHPIC=$FFFF is equivalent to draw mode (though not as
fast), and S_pASHPIC=$0000 is equivalent to an erase.

3. Flip mode (Mode = 3) is very useful for plotting a temporary line across
an existing image, because it will show up regardless of whether the area it
crosses is bright, dark, or a mix. In addition, you can remove the line and
restore whatever was there previously by flipping the same line again. Flip
mode is usually ideal for plotting a visible cross or other cursor which you
move about the screen.

Copyright (C) 1986, SHA, Inc.

$fifififi

GRAPHICS TOOLBOX SYSTEMS HANAGEHENT ASSOCIATES, INC.

PBDC S_nm

3. You may wish to try animating your graphics by drawing a line, erasing
it, and then repeating it a new location. Also, you can create "rubber band"
lines by leaving one end of a line "anchored", then flipping, "un-flipping" and
moving the other end. When using these techniques, the line may appear to
pulsate, or dots may appear to "run" back and forth, or the line may even
appear to be drawn and erased very slowly under some circumstances. This is
due to the "strobe" effect of the refresh rate of the screen. The screen is
refreshed from top to bottom 60 times per second by hardware. Now suppose you
alternately draw and erase a vertical line, which happens to take exactly
1/120th of a second to draw or erase. The result will be that any given point
on the line will always be "caught" by the refresh in the same state (either
off or on). Since the drawing occurs asynchronously with the screen refresh,
this means that the line will not appear to flash but will appear steady.
Depending on how "out of sync" it is with the refresh, the line may appear
completely visible, completely invisible, or only partially drawn! If the
drawing time is changed slightly from 1/120th of a second (by lengthening the
line, for instance), the line may appear to be drawn and erased very slowly.
Under most circumstances, strobing problems are not very noticeable. If you
run into this situation with animation, you may wish to lengthen the time an
image is left on the screen by adding a waiting loop for a few milliseconds
before erasing.

USAGE:

S_DRAW x, Y

DESCRIPTION:

Procedure S_DRAW draws a solid line from the current graphic cursor
position, (5 X, S Y), to the specified coordinates (X, Y). X and Y should be
type lNTeger_(but_bYTE or WORD expressions are also acceptable). 0n exit, the
graphic cursor coordinates are updated to the new endpoints.

EXAMPLE:

PROGRAM GRAPHIX
INCLUDE LIBRARY
INCLUDE SGD.E

BEGIN
S_INIT
S_MOVE o ,o
S_DRAW S_XMAX, S_YMAX ; Draw full diagonal line

S_END
END

Copyright (C) 1986, SM, Inc.

own

DRAW A LINE

SYSTEMS MANAGEMENT ASSOCIATES, INC. GRAPHICS TOOL BOX

100,120 ; Move

TIME,

S_MOVE X, ‘1

DESCRIPTION:

Procedure 5_MOVE installs the value of X in S_X and Y in S_Y x and Y are
lNTeger (but BYTE or WORD expressions are acceptable)

EXAMPLE:
PROGRAM GRAPHIX
INCLUDE LIBRARY
[NCLUDE SGD.E
INT TIME
INT PRICE

BEGIN
S_lNIT
S_hovr

S_hovu

S_END
END

Copyright (C) 1553, SKA, Inc.

graphic cursor to X-IOO, Y-120

2*PRICE-4

USAGE:

1. S_DRAW is exactly equivalent to calling S_PLOT with MODE of 1.

MOVE THE GRAPHIC CURSORmoc s_novr

OTES

GRAPHICS TOOLBOX SYSTEMS MANAGEMENT ASSOCIATES, INC. 23

24 SYSTEMS MANAGEMENT ASSOCIATES, INC. GRAPHICS TOOL BOX

PROC S_RELPLOT PLOT A LINE RELATIVE TO THE CURSOR

USAGE:

S_RELPLOT DX, DY [,Mode]

DESCRIPTION:

Procedure S_RELPLOT plots a line from the present graphic cursor location to
a point ox pixels to the right and DY pixels up from the graphic cursor. DX
and DY are signed lNTegers (but BYTE or WORD expressions may be used for
positive values). Mode is an optional argument of type BYTE specifying the
desired drawing mode. If omitted, the default Mode will be the current value
of S_MODE (which is normally 1=Draw mode unless you have changed it).

EXAMPLE:

PROGRAM GRAPHIX
INCLUDE LIBRARY
INCLUDE SGD.E

DATA INT SIZE = 10

BEGIN
S_INIT
S__MOVE 40,50
S_RELPLOT 20, O ; Draw 20 pixel long horizontal line
S_RELPLOT -SIZE, -SIZE Diagonal down & left
S__RELPLOT 0,-20, 4 ; Down 20 with dashed line

S__END
END

NOTES:

1. S__RELPLOT DX, DY, Mode is exactly equivalent to S_PLOT S_X+DX, S_Y+DY,
Mode. In particular note that DX=1 means a two pixels will be drawn, not one.

Copyright (c) 1986, SI“, Inc.

PLOT A RECTANGLE

USAGE:

S_RECT Dx, DY ,Mode]

DESCRIPTION:

Procedure S_RECT plots a rectangle with one corner at the current graphics
cursor, (S_X, S_Y), and the opposite corner at (S X+DX, S_Y+DY). DX and DY are
INTegers (but BYTE and WORD expressions are aIso acceptable). Mode is an
optional BYTE argument specifying the desired drawing mode. If omitted, the
mode will be the current value of S MODE (which is normally l=draw unless you
have changed it). Legal values for MODE are 0=ignore, l=draw, 2=erase, 3=flip,
or A=dash. On return, the cursor position is unchanged.

EXAMPLE:

PROGRAM GRAPHIX
INCLUDE LIBRARY
INCLUDE SGD

PROC BOX_SCREEN
; Draw a box around the screen without affecting the cursor position

INT YSV
BEGIN
xsv = s_x
YSV = S_Y
S_MOVE 0,0
5 RECT s XMAX, s YMAX
s:MOVE XSV, ysv _
END

BEGIN
S_INIT
on SCREEN
5 END
END

NOTES:

1. S_RECT DX,DY MODE is equivalent to:

S_PLOT S_X+DX,S_Y,MODE
S_rLOT s_x,s Y+DY,MODE
S_pLOT s_x—ni,s_I,MODE
S_yLOT S_X,S_Y-DY,MODE

Copyright (C) 1986, SMA, Inc.

INT XSV

OWN

MICS TOOLBOX SYSTEMS MANAGEMENT ASSOCIATES, INC.

mo s_REcr

PLOT A SOLID RECTANCLE

USAGE:

S_BAR DX, DY [,Mode [,Stsggerl]

DESCRIPTION:

Procedure S_BAR plots a solid rectangular bar by plotting a series of
horizontal lines. One corner of the bar will be at the current graphic cursor
coordinates, (S_X, S_Y) and the opposite corner will be at (s_X+DX, S_Y+DY).
Dx and DY are INTeger coordinates (although BYTE or WORD expressions may be
used for positive values). Mode is an optional argument of type BYTE specify-
ing the mode in which the horizontal lines of the bar should be plotted,
defaulting to the current value of S_MODE (S_MODE is normally l=draw unless you
have altered it). Legal values for Mode are 0=ignore, 1=draw, 2=erase, 3=flip,
and 4=dash. The second optional argument, Stagger, is used only with Mode=4
and is discussed in Note 2 below. The graphic cursor position is unchanged
when S_DAR returns.

EXAMPLE:

PROGRAM GRAPHIX OWN
INCLUDE LIBRARY
INCLUDE SGD.E

BEGIN
S_INIT
S_MOVE 110,100
S_BAR 10,5 ; Draw a solid bar X=110 to 120, Y=100 to 105

S_MOVEO, S_YMAX-SYMAX/Z
S_BAR S_XMAX,S_YMAX7E,2 Clear the top half of the screen

S_END
END

NOTES:

1. Using SHEAR with Mode=2 is a useful way to clear a portion of the
screen. Using S_BAR with mode=3 can be used to "reverse video" any rectangular
area of the screen.

2. With Mode=4 (dashed line), Stagger is a BYTE expression evaluating to a
number between 0 and 15 specifying how many bits the dash pattern the dash
pattern, S_DASHPIC, should be rotated before drawing each individual horizontal
line of the bar. This is useful for creating patterns for a bar graph, etc.
For example, if Stagger is specified as l, The first line will be drawn using
a copy of the S DASHPIC pattern will be rotated 1 bit left, the second line
using a copy of ELDASHPIC rotated two bits left, etc.

Copyright (c) 1986, SMA, Inc.

SYSTEMS MANAGEMENT ASSOCIATES, INC. GRAPHICS TOOL BOX

moo S__BAR

3. The bar plotted will encompass both the cursor coordinates and the
specified coordinate. Thus if the cursor is at (0,0) and BOX 2,2 is specified,
the box drawn will be 3 pixels by 3 pixels, not 2 by 2.

PLOT TEXT

USAGE:

S_TEXT String ,Angle [,Size [,Mode]]

DESCRIPTION:

Procedure S_TEXT is used to draw text characters in high-resolution graphics
mode. String is a PROMAL string to be displayed. The text will be displayed
starting at the current cursor position, (S_X, S_Y), using the currently —
defined character font (see Note 2 below). Angle is an optional argument of
type BYTE (or WORD or INT) giving a numeric code for the orientation of the
text. The default value is 0. Legal values are 0 (horizontal), 1 (90 degrees
vertical), 2 (180 degrees, upside down) or 3 (270 degrees, vertical). Size is
an optional argument of type BYTE (or WORD or INT) specifying the size
multiplier for the string. The default value is 1. Legal values may be 1
through 7. A value of 2 will cause double size characters, 3 triple size,
etc. Mode is an optional argument of type BYTE (or WORD or INT) specifying the
drawing mode for the characters. The default mode is l-draw. Legal values are
0=ignore, 1=draw, 2=erase, or 3=flip (flip mode is not recommended).

The string may contain any ASCII characters ($20 through $7F). A single
character can also be specified instead of a string. The characters will be
drawn starting with the lower left hand corner of the first character at the
cursor. When S_TEXT returns, the cursor will be placed after the last
character.

EXAMPLE:

PROGRAM GRAPHIX
INCLUDE LIBRARY
INCLUDE SGD.E

BYTE NUMBUF [6] ; Buffer for encoding number to ASCII
DATA WORD TITLE = "CONSOLIDATED WIDGETS"
INT MEGABUCKS

BEGIN

MEGABUCKS 223

S_INIT
S_MOVE so,10.
S_TEXT "Month” 3 Label horizontally
S_MOVE 10,20
S_TEXT "Sales in $Millions", 1 ; Label vertical axis

Copyright (C) 1986. SKA, Inc.

moc S_TEXT

GRAPHICS TOOLBOX SYSTEMS HAHAGEHEIT ASSOCIATES, INC. 27

S_MOVE 40,150
S_TEXT TITLE, 0, 2 ; Display 2x size title
S_MOVE 12,20
INTSTR (MEGABUCKS, NUMBUF) ; Convert number to string
S_TEXT NUMBUF ; Annotate value

5 END
END

NOTES:

1. The default character font draws characters using a 5 x 7 pixel
character in a 6 x 10 character cell. On the Commodore 64, the graphics screen
is wide enough for 53 characters (320/6). 0n the Apple II, 46 characters can
be drawn on'a full-width line.

2. You can define alternate character fonts, such as foreign language
characters, Old English characters, proportional characters, etc. as you
desire. Appendix 1 describes how to define your own character font.

3. Characters are drawn as a series of lines. If you want to place text
over the top of some part of an image (such as a cross-hatched piece of a pie
chart), you may wish to use S_DAR with Mode=2 to erase an area before calling
S_TEXT. Effective titles can be used by using S_TEXT with Mode=2 (erase) over
a solid area created with S_EAR. Flip mode (3) is not recommended for S_TEXT
because the "vertices" of the characters will not be visible (because the
characters are drawn as a series of lines with common endpoints).

PLOT A_SHAPE FROM A TABLE

USAGE:

S_SHAPE Shapestring

DESCRIPTION:

Procedure S_SHAPE plots a shape on the screen from information compactly
stored in a special string called a shape table. Shapestring is the address of
the shape table to be used. Plotting will be begun at the current graphic
cursor location, (S_X, S_X). The shape table is a series of bytes terminated
by a $00 byte.

A shape table is particularly useful for drawing pre-defined shapes quickly,
especially fairly complex shapes which are not too large. Each byte in the
shape table contains either a vector byte containing the displacement (DX and
DY) for the next point to be drawn, or a special escape byte. Vector bytes
have the following format:

Copyright (C) 1986, SHA, Inc.

Pmc S_SIIAPE

SYSTEMS MANAGEMENT ASSOCIATES, INC. GRAPHICS TOOL BOX

Vector byte for shape table

DX and DY may have the values -7 to +7 only, expressed in twos complement
form. Either OK or DY can be 0, but not both. DX and DY are conveniently
expressed as two hex digits, using Table 5.

GRAPHICS TOOLBOX SYSTEMS MANAGEMENT ASSOCIATES, INC.

Bit 7 5
_T__T‘_T-_ _-‘l"-‘-‘l'__1'——

[_ DX DY
__J._-J.——J.——. _J.__.L__&—

Table 5: flex Digits for Vector Byte Encoding

—7 —5 -4 -3 -2 -1 +5 +6 +7

E 2 3 5

29

Value: —6 +1 +2 +3 +g

'dexDigit: 9 A s c n F 0 1 4 6 7

Each byte in the shape table normally causes one line to be plotted in the
current mode, S_MODE, starting at the current cursor location, with dimensions
specified by DX and DY of the byte. For example, a byte of $60 plots a line to
the right by six pixels, and SE9 plots a diagonal line 2 to the left and 7
down.

A byte in the shape table with value $8n is an escape code, and causes the
following vector byte to be plotted using mode n. For example, $80, $23 causes
a move by 2 to the right and up three pixels. Legal values for n are 0 (move)
I (draw), 2 (erase), 3 (flip). and 4 (dashed). Escape codes only affect the
vector byte immediately following the escape code; remaining vector bytes are
drawn in the normal mode.

EXAMPLE:

PROGRAM GRAPHIX
INCLUDE LIBRARY
INCLUDE SGD.E

DATA BYTE CROSS , ; Shape table for + shape centered on cursor
SEC,40,$80,SEE,$04,$80,$0E, “ ‘ Leaves cursor where it was

BEGIN
S_MOVE 40,40
S_SHAPE CROSS ; Draw 4 x cross at (40,40)

S_END
END

Copyright (C) 1986, SMA, Inc.

OWN

1. Apple users should note that PROMAL shape table definitions differ from
the shape table format used in BASIC, which can only draw vertical or
horizontal lines. PROMAL shape tables are more versatile because diagonal
lines can be drawn.

2. Since shape table definitions are terminated by a zero byte, you may
conveniently use the PROMAL string manipulation subroutines (MOVSTR, etc.) on
shape tables.

3. The graphic cursor will be left wherever you complete the shape, so it’s
often a good idea to end at the same place you started at. Don’t forget the 0
byte at the end of the shape table!

PLOT A CIRCLE OR OCTANTS OF ARC

USAGE:

S_ARC Radius, Octmask [,Mode]

DESCRIPTION:

S ARC is one or several subroutines 1n the PROMAL GRAPHICS PACKAGE for
drawing circles and arcs. The other subroutines are W ARCI and W_ARC2,
described in the section on the WGS. S_ARC is not as versatile as these
subroutines, but is much faster. S_ARC_can draw a circle or any combination of
eight octants of arc of a circle. An octant of arc is one eighth of a circle,
in other words, a 45 degree section of the circumference. The circle is drawn
with the center at the current graphic cursor, (S X, S Y). Radius is an
INTeger expression (but BYTE or WORD expressions are aEceptable) for the
desired radius. Octmask is a BYTE expression identifying which octants of the
circle are to be plotted. Each bit of Octnask corresponds to one octant of the
circle, as shown in Figure 6. A value of $FF plots the entire circle. A value
of $01 plots only the octant from 0 to 45 degrees. Mode is an optional
argument of type BYTE specifying the plotting mode desired. Mode defaults to
the current value of S MODE (which is normally 1=draw unless you have altered
it). Legal values for—Mode are O-ignore, 1=draw, 2=erase, and 3=flip. The
graphic cursor position is not changed when S_ARC returns.

Copyright (C) 1986, SMA, Inc.

mac S_ARC

NOTES:

SYSTEMS MANAGEMENT ASSOCIATES, INC. GRAPHICS TOOL BOX

$02
$04
$08
$10
$20
$40
$80

GRAPHICS TOOLBOX SYSTEMS MANAGEMENT ASSOCIATES, INC.

Octant Bit Mask

Na‘U‘bUNl-‘OSpecify Octnask as the sum of the
bit mask values above for the octants
you wish to be plotted.

Figure 6: Octants for S__ARC

EXAMPLE:

PROGRAM GRAPHIX
INCLUDE LIBRARY
INCLUDE SGD

BEGIN
S_INIT
S_MOVE 50,50
S_ARC 25, $FF Draw a circle of radius 25 centered at (50,50)
S_MOVE 100,0
S_ARC lO, 30F, 3 ;Flip semi circle 0-180 degrees

S_ARC 10, $OF, 3 ;Flip semi circle back off

S__END
END

NOTES:

1. S_ARC should not be used to plot circles or arcs which are partially
off-screen; the portions on-screen may be incorrectly drawn if you do so.

2. Circles may look egg-shaped rather than circular. This is due to the
fact that the pixels on the screen are not the same height and width. If this
is a problem, you may wish to use W_ARCl or W_ARC2 instead, which can specify
an aspect ratio to correct the appearance of a circle.

3. S_ARC is well-suited to flip mode operation because it draws all the
pixels individually, not as a series of line segments.

Copyright (C) 1986, SMA, Inc.

‘lLLPiYB

32 SYSTEMS MANAGEMENT ASSOCIATES, INC. GRAPHICS TOOL BOX

FUNC BYTE S__FILL FILL AN ENCLOSED AREA WITH A PATTERN

Bytevar = S_TILL (Pattern, Buffer, Buffersize)

Function 5 FILL is one of the most powerful and interesting subroutines in
the PROMAL GRAPHICS PACKAGE. It can be used to fill an arbitrary-shaped
enclosed area on the screen with a pattern, such as a cross-hatch. The filling
will be begun at the current graphic cursor, (S_X, S_Y) and expand in all
directions until a solid boundary line (one bits) is encountered. Pattern is
the address of a 16 word table defining the pattern to be used for fill. This
pattern is a 16 dot by 16 dot template which will be used repetitively
throughout the filled area. See Note 1 below for the format of the Pattern
definition. The file FILLDEFS.S contains DATA statements for 16 different
pre—defined fill patterns for your convenience, as shown in Figure 7. Buffer
is the address of a scratch area of memory that S_FILL can use for calculations
while it is running. For most shapes, 8 buffer of a couple hundred bytes will
be sufficient. For filling very complex shapes, a larger buffer may be
required. Buffersize is the size in bytes of the buffer area. The function
returns a BYTE value which is TRUE if the fill operation was successful, and
FALSE if the fill could not be completed because the buffer was not large
enough. The position of the graphic cursor, (S_X, S_Y) is not altered.

ILLPQTC FILLPQTD FILLPnTE FILLPfiTF

FILLPHT4 ILLPRTS ILLPRTE FILLPfiT?

FILLPfiTZ

Figure 7: Predefined Fill Patterns in File FILLDEFS.S

Copyright (C) 1986, SMA, Inc.

DESCRIPTION:

EXAMPLE:

PROGRAM GRAPHIX OWN
INCLUDE LIBRARY
INCLUDE SGD.E
INCLUDE FILLDEFS ; 16 Pre-defined fill patterns
CON WORD SCRATCHSZIZOO
BYTE SCRATCH [SCRATCHSZ]

BEGIN
S_INIT
S_MOVE 100,90
S ARC 30, $FF ; Draw two concentric circles

53010 60, srr
IF NOT S_PILL (FILLPATO, SCRATCH, SCRATCHSZ) ; F111 center circle
ABORT "#CNEED BIGGER SCRATCH FOR S FILL"

S_MOVE 100,50 _
IF NOT 5 FILL (FILLPATl, SCRATCH, SCRATCHSZ) ; Fill outer circle
ABORT fiVICNEED BIGGER SCRATCH FOR S_PILL"

S_END
END

NOTES:

1. The fill pattern is 16 words of 16 bits each. Each 1 bit turns on a
pixel; each 0 bit turns at: a pixel. The Utility program MAKEFILL is included
to make it easy to define fill patterns of your own using the EDITor to "draw"
the patterns desired. This program was used to define the fill patterns in
FILLDEFS.S. See the comments in the source program MAKEFILL.S for an
explanation of how to use the program. The file FILLDEFS.T was created with
the EDITor as input to MAKEFILL.S.

2. If you try to fill an area that is already filled with a pattern, the
S_PILL function will just treat it as a very complex shape to be filled and
will try to fill in between the existing filled dots. This will probably
result in the function running out of scratch buffer space and returning FALSE.

3. Even a tiny opening in an enclosed shape will allow the fill pattern to
"spill out" and fill the entire screen.

Copyright (C) 1986, SKA, Inc.

GRAPHICS TOOLBOX SYSTEMS MANAGEMENT ASSOCIATES, INC.

EXTRACT A ROW OF PIXELS FROM THE SCREEN

USAGE:

S_GETDOTS DX, Buffer

DESCRIPTION:

Procedure S_GETDOTS extracts a horizontal row of dots from the screen and
copies them to.a an array of bytes, one pixel per bit. This procedure is
useful for writing subroutines to save, restore, or print an image or part of
an image. The procedure will copy pixels starting at the current cursor
position, (S_X, S_Y). DX is an INTeger specifying the width of the row of
pixels desired. Buffer is the address of the destination array. Pixels will
be packed into Buffer eight pixels per byte, with the left most pixel in the
high order bit of the first byte. A total of DX+1 pixels will be copied; any
fractional bytes will be zero-filled. The minimum size required for Buffer is
(DX+8)/8 bytes. S_GETDOTS will copy only as far a the end of the current
horizontal line; it will not "wrap around" to the next line even if you specify
a DX larger than the number of remaining pixels on the line.

EXAMPLE:

PROGRAM GRAPHIX
INCLUDE LIBRARY
INCLUDE SGD.E

BYTE ROWDOTS Big enough for 320 dots
BEGIN
S_INIT

S_MOVE 0,50
S_GETDOTS 100, ROWDOTS ; Save 101 pixels (0,50) through (100,50)

S_END
END

NOTES:

1. The subroutines S_SV_IMAGE, S_PUT_IMAGE and S PRT_IMAGE in file IMAGE.S
provide excellent examples of how to_use_this procedure to save all or part of
an image in memory, to a disk file, or to the printer. You may wish to study
these subroutines to learn how to use S_GETDOTS effectively.

Copyright (C) 1986, SMA, Inc.

OWN

34 SYSTEMS MANAGfliENT ASSOCIATES, INC. GRAPHICS TOOL BOX

PROC S_GETDOTS

GRAPHICS TOOLBOX SYSTEMS MANAGEMENT ASSOCIATES, INC.

PROC S_PUTDOTS INSTALL A HORIZONTAL ROW 0F PIXELS INTO SCREEN MEMORY

USAGE:

S_PUTDOTS Buffer, DX Setcolor]

DESCRIPTION:

Procedure 5_PUTDOTS performs the inverse operation of procedure S_GETDOTS.
S_PUTDOTS copies a group of pixels packed as bits in an array onto the screen.
The pixels are installed starting at the current graphic cursor location, (S_X,
S_Y). Buffer is the address of the array of bytes. The buffer has pixels
packed 8 per byte, with the most significant bit being the left most pixel. DX
is an integer specifying the width in pixels to be copied. A total of DX+1
pixels will be extracted from the array. Setcolor is an optional argument of
type BYTE, pertaining only to the Commodore 64; it will be ignored on the
Apple. If Setcolor is TRUE, then the pixels copied onto the screen will be
copied in the currently selected color and background, S_FORECOLOR and
S_BACKCOLOR. If Setcolor is omitted or FALSE, the pixels will be drawn in
whatever color combination is currently on the screen at their position.

EXAMPLE:

PROGRAM GRAPHIX
INCLUDE LIBRARY
INCLUDE SGD.E

BYTE ROWDOTS [40] ; Big enough for 320 dots
BEGIN
S_INIT

S_MOVE 10,100
S_GETDOTS 50, ROWDOTS ; Save 51 pixels thru

S_CLEAR

S_MOVE 10,100
S_PUTDOTS ROWDOTS, 50 ; Restore 51 pixels of old image

S_END
END

Copyright (C) 1986, SMA, Inc.

(10,100) (60,100)

FU'NC WORD S_XYADIIR

NOTES:

1. By using S_PUTDOTS it is possible to write subroutines to copy all or
parts of images from other sources whose format is known (such as other graphic
application programs) onto the screen and modify the image using the
subroutines in the PROMAL GRAPHIC TOOLBOX. It is also possible to achieve
effects such as vertical scrolling of graphics images. The subroutines
S_RCL_IMAGE and S_GET IMAGE in the file IMAGE.5 illustrate how to recall images
or parts of images from memory or disk. You may find it worthwhile to study
these subroutines to see how to use S_PUTDOTS effectively.

COMPUTE THE ADDRESS OF THE CURSOR

USAGE:

Wordvar XYADDR

DESCRIPTION:

Function S_XYADDR computes the address of the byte in screen memory
containing the pixel at the graphic cursor, (S_X, SY). It returns the address
as the value of the function. In addition, it.returns a one-bit mask in the
global variable S_MASK. This mask can be ANDed with the byte at the returned
address to extract the pixel from memory. result means the pixel off; a
non—zero result means the pixel is on (1).

EXAMPLE:

PROGRAM GRAPHIX
INCLUDE LIBRARY
INCLUDE SGD.E

FUNC BYTE ISON ; X , Y
; Return TRUE if pixel at (X, Y) is on,
; otherwise return FALSE. Does not affect
: the cursor location.

ARC INT X
ARG INT Y
INT XSV
INT YSV
BYTE TEMP
BEGIN
XSV=S X ; Save cursor location
YSV=S:Y
TEMP = (S XYADDR@< AND MASK) <> 0
5 MOVE XSV, vsv
RETURN TEMP
END

BEGIN

Copyright (C) 1986, SMA, Inc.

SYSTEMS MANAGEMENT ASSOCIATES, INC. GRAPHICS TOOL BOX

S_INIT

IF ISON(0,0)
PUT CR, "The

S_END
END

NOTES :

1. For the Commodore 64, the address of the color byte controlling the
colors at (S_X, S_Y) can be computed using the following statements:

WORD COLORPTR
BYTE FORECOLOR
BYTE BACKCOLOR

COLORPTR = ((S_XYADDR S_HRPAGE:+ << 8 >> 3) $8COO

The color codes for the pixel at the cursor can then be extracted like this:

FORECOLOR COLORPTR@< >> A
BACXCOLOR COLORPTR@< AND sor

This completes the description of the SGD subroutines. You may wish to
study some of the example programs to learn more about how to use the SGD
procedures and functions. The following section describes another part of the
PROMAL GRAPHICS TOOLBOX, the Window Graphic System (WGS)

Copyright (c) 1986, SKA, Inc.

pixel at the origin is on.

GRAPHICS TOOLBOX SYSTEMS MANAGEMENT ASSOCIATES, INC. 37

38 SYSTEMS MANAGEMENT ASSOCIATES, INC. GRAPHICS TOOL BOX

The Window Graphics System (WGS) is the name given to collection of PROMAL
subroutines included with the GRAPHICS TOOLBOX. These subroutines are provided
both as a pre—compiled module and in source form, so you can add to them or
modify them if you wish (CAUTION: If you modify the WGS in any way, be sure to
modify a copy of the file and give it a new name other than WGS).

So far all the subroutines have dealt with screen coordinates, expressed as
The distinguishing feature of the WGS is that coordinates are

expressed as type REAL values. The big advantage of the WGS is that you give
it coordinates in any unit of measure that is appropriate to your application,
and it automatically scales the coordinates to the screen. For example, if you
were plotting a sine wave, your Y coordinates might range from -l.0 to +1.0,
but if you were plotting a map of the USA with data in miles, coordinates might
run from 0.0 to 3500. The X and Y axis can be independently scaled. For
example, the X axis might run from 0.0 to 0.1 microseconds and the Y axis from
200000.0 to 800000.0 angstroms for some scientific data. In graphics
parlance, this kind of coordinate system is called a world coordinate system.

A second distinguishing feature of the WGS is the use of viewports and
windows. A viewport is a rectangular area of the screen, in which all WGS
graphics will be drawn. The viewport is defined by giving the screen
coordinates in pixels (as INTegers) of where you want the viewport on the
screen. It can be as large as full screen or as small as 8 pixels wide by
three pixels high.

The window tells what dimensions you want associated with the viewport, so
that the WGS knows how to scale your data for plotting. To specify a window,
you tell the WGS what coordinates should be plotted at the corners of the
viewports, expressed as REAL values in terms of your data.

An example may help clarify the relation of the viewport and the window.
Suppose you want to plot a line graph of sales for the year, with months along
the X axis going from 1 to 12, and dollars along the Y axis going from $500,000
to $800,000. Further suppose that you wanted this graph to be plotted with
the lower left hand corner at screen coordinate (24, 30) and the upper right
hand corner at (216, 150). In this case your viewport would be defined as a
rectangle with vertices at (24, 30) and (216, 150), and the corresponding
window would be defined by (1.0, 500000.) and (12.0, 800000.), as shown in
Figure 8.

Another very usetui characteristic of the WGS is that the lines drawn by the
WGS will be clipped at the viewport boundaries. This means that lines will not
be displayed outside the viewport. Clipping is illustrated in Figure 9. Here
the WGS was told to plot a diagonal line which extended beyond the window
boundaries. However, only the part of the line inside the viewport
(represented by the rectangle) was actually drawn; the portion of the line
outside the viewport (represented by the dashed line) was not drawn.

Copyright (C) 1986, SHA, Inc.

INTegers.

INTRODUCTION

WINDOW GRAPHICS SYSTEM (WGS)

[215,153]7

‘b‘ A

1.2 12.8

Figure 8: Relationship of Viewport and Window

_ [H .‘vs‘.H ‘r‘]
a.-.EEL

Figure 9: Clipping

The clipping feature is very important for certain kinds of graphics.
For example, suppose you plotted a mechanical drawing of a machine part. If
you wanted to "zoom in" to only see a portion of the part "close up", you could
simply change the window definition and redraw the exact same data as before.
Only the part of the plotted data defined by the window would be plotted.

“CS CURSOR

Like the SGD, the WGS has an invisible graphic cursor. The current position
of the WGS cursor is expressed as (W X, W_T). The exported REAL variables V_}
and H_} give the current WGS cursor position, and are updated automatically as
you perform WGS drawing. Unlike the SGD, any values are legal for W_X and W_X,
not just values within the window. For instance, if your window is defined
from X = 1.0 to X = 12.0, it is perfectly legal to set S_X to 15.32, 100000.0,
or -261.42. If you draw beyond the boundaries of the window, nothing will be

Copyright (C) 1986, SMA, Inc.

its”?

1|IH_.‘a<,H__‘r‘]

(24,3211
SBBBBB.B

GRAPHICS TOOLBOX SYSTEMS MANAGEMENT ASSOCIATES, INC.

When you call a WGS subroutine which moves the cursor, it also moves the SGD
cursor, provided that the cursor is in the viewport. However, the SGD cursor
will always be "clipped" at the viewport boundaries.

Please note that the WGS routines call the SGD routines to actually perform
the plotting. You may freely mix SGD calls with WGS calls. Naturally, if you
call an SGD routine, it will not be bounded by the viewport or window
established for the WGS; the SGD routines work just like they always did. Also
note that moving the SGD cursor does not update the position of the WGS cursor.

This relationship between the WGS and the SGD is very handy. For example,
you can plot your data using the WGS calls, but annotate your axes outside of
the viewport by using SGD calls. The SALESDEMO.S file uses this method, as
well as the example given in the description of W_AXIS later in this section.

USING THE "GS

In order to use the WGS, you need to set up your program as shown in the
skeleton program below:

PROGRAM Name OWN
INCLUDE LIBRARY
INCLUDE SGD.E
INCLUDE WGS.E

BEGIN
S INIT
W}NIT
; ... Graphics calls here as needed here. .
5 END
END
You need to have the line INCLUDE WGS.E in your program to make the

definitions of the WGS subroutines and variables known to the compiler. Note
that you still need to INCLUDE SGD.E as well. In your program, you should call
5_INIT first and then W_INIT to initialize the graphics system before using
other graphics calls. W_INIT will be described in the following section.

When loading your program, you need to load the SGD first, then the WGS, and
then your application program. This can be conveniently accomplished by using
the BOOTW command from the EXECUTIVE. For example:

UNLOAD
BOOTW MYPROG

This loads the SGD, WGS, and then loads and executes MYPROG.C. The source
program for BOOTW is included on the disk if you wish to modify a copy of it
for your specialized needs.

Copyright (C) 1986, SKA, Inc.

40 SYSTEMS MANAGEMENT ASSOCIATES, INC. GRAPHICS TOOL BOX

GRAPHICS TOOLBOX SYSTEMS MANAGEMENT ASSOCIATES, INC. 41

Table 6
WGS SUBRMINE SUMMARY

Name Description

W_iNIT Initialize WGS system and initialize variables.
W_VIEW Specify desired viewport in screen coordinates.
W_WINDOW Specify desired window in world coordinates.
W_CLEAR Clear the current viewport.
W_BOXVP Draw a rectangle around the current viewport.
W_MOVE Move the cursor to the specified world coordinates.
W_DOT Draw a dot at the specified world coordinates.
W_PLOT Plot a line to the specified world coordinates in a given mode
W_DRAW Draw a line to the specified world coordinates.
W_AXIS Draw axes with optional tic marks
W ARCl Draw a circle, ellipse, or are from a point on the arc.

w:ARC2 Draw a circle, ellipse, or arc from the center.

Table 7
WGS Variables and Constants

Name Type Description

W X REAL World cursor location, X coordinate.
W_Y REAL World cursor location, Y coordinate.
W_XMIN REAL Minimum viewable world X coordinate.
W_YMIN REAL Minimum viewable world Y coordinate.
W_XMAX REAL Maximum viewable world X coordinate.
W_YMAX REAL Maximum viewable world Y coordinate.
W_VXMIN INT Screen X coordinate of left edge of viewport.
W_VYMIN INT Screen Y coordinate of bottom edge of viewport.
W_VXMAX INT Screen X coordinate of right edge of viewport.
W_VYMAX INT Screen Y coordinate of top edge of viewport.
W—TIC DX REAL Tic interval for X axis for Procedure W_AXIS
W_Tlc:DY REAL Tic interval for Y axis for Procedure W_AXIS
W:TIC_SIZE INT Tic size in pixels for Procedure W_AXIS

Notes for Table 7:

1. See PROC W_AXIS for information about the following additional EXPORTED
CONstant names: W_X_AXIS, W_Y_AXIS, W_POS_TICS, W_NEG_TICS, W_BOTH_TICS.

Copyright (c) 1986, m, Inc.

SUMMARY OF WGS SUBBOUTINES AND VARIABLES

Table 6 summarizes the subroutines which are EXPORTed by the WGS, which you
may call from your application programs.

The WGS is set up as a separately compiled PROMAL module. It EXPORTS the
variables described in Table 7, which may be accessed by your application
program.

IMPORTANT!

using the WGS routines, be very careful to use REAL
coordinates where expected. If you use an INTeger, BYTE
or WORD value where a REAL is expected, it will not be
detected as a compilation error, but will produce very
strange results, possibly crashing the system! In
particular remember that REAL constants must be written
with a decimal point. Therefore W_DRAW 0, 10 is wrong
but W_DRAH 0., 10. is correct.***$fi-***X~*# *X-X'fi-I'fl-fi-l'ilfl-X'***

DETAILED DESCRIPTION 0? “CS SUBROUTINES

This section describes the WGS subroutines individually. An example is
given in the discussion of W_DRAW illustrating W_INIT, W_VIEW, W_WINDOW,
WLCLEAR, W_EOXVP, W_MOVE, W_TLOT and W_DRAW. The W_AXIS, W_ARCl_and W_ARCZ
discussions have their own examples.

INITIALIZE WGS

USAGE :

W_iNII‘

DESCRIPTION:

Procedure W_INIT initializes the WGS software. It should be called
S_INIT but before any other calls to WGS routines.

Copyright (C) 1986, SHA, Inc.

after

ms w___m1'r

SYSTEMS MANAGEMENT ASSOCIATES, INC. GRAPHICS TOOL BOX

GRAPHICS TOOLBOX SYSTEMS MANAGEMENT ASSOCIATES, INC.

mc w_vmw

.-...., ---, -..-, ..--

b3

PROC W_HINNW

DEFINE CURRENT VIEWPORT

USAGE:

W_VIEW sxo, syo, 5x1, SYl

DESCRIPTION:

Procedure W_VIEW is used to define a new viewport on the screen. 5X0, SYO,
5X1, and 5Y1 are all INTeger arguments (but BYTE or WORD expressions are also
acceptable) defining the desired coordinates for the lower left hand corner of
the viewport, (SXO, 5Y0), and upper right hand corner of the viewport, (5x1,
8Y1). Thereafter, any plotting done by WGS routines will be performed in this
viewport.

NOTES:
1. You may define any number of viewports on the screen. However, only the

most recently defined will be active. If you wish to have several viewports on
the screen at once and "switch back and forth" between them, you should save
the "state" of each viewport (by saving the values for W_VIEW, W_WINDOW, and
the cursor coordinates) and make a new call to W VIEW and W WINDOW each time
you switch. _ _

2. For future compatibility with the IBM version of the PROMAL GRAPHICS
PACKAGE (when available), you may wish to make the values of SXO and 5X1 evenly
divisible by 8. However, they may be any value up to the limits of the screen
size for the Apple and Commodore versions.

3. The pixels defining the viewport are considered to be part of the
viewport and therefore can be plotted on with WGS calls.

DEFINE CURRENT WINDOW BOUNDS

USAGE:

W_WINDOW x0, YO, x1, Y1

DESCRIPTION:

Procedure W_WINDOW defines the world coordinates to be assigned to the
limits of the currently-defined viewport. X0, Y0, X1, and Y1 are all type
arguments, defining the minimum and maximum values to be associated with the
viewport. (X0, Y0) is the world coordinate to be plotted at the lower left
hand corner of the viewport, and (X1, Y1) is the world coordinate to be defined
at the upper right hand corner. Subsequent calls to WGS plotting subroutines
will only display values within this range; plotting outside the window limits
will cause "clipping".

Copyright (C) 1986, SMA, Inc.

“I SYSTEMS MANAGEMENT ASSOCIATES, INC. GRAPHICS TOOL BOX

moc W_CLEAR

W_CLEAR

DESCRIPTION:

Procedure W_CLEAR clears the currently defined viewport. It does not affect
any of the image on the rest of the screen.

W_BOXVP

DESCRIPTION:

Procedure W_BOXVP draws around the currently defined viewport.

W_MOVE x, Y

USAGE:

DESCRIPTION:

Procedure W MOVE moves the world graphic cursor. X and Y are REAL values
for the desired position. Any REAL values may be used. The world cursor,
(W_X, W_Y) will be set to (X, Y). If the resulting position is in the window,
the screen cursor (S_X, S_Y) will also be updated to the corresponding
position.

Copyright (C) 1986, SKA, Inc.

MOVE THE WORLD CURSORPROC W_MOVE

box

DRAW A BOX AROUND THE VIEWPORTPROC "_nom

MOVE THE VIEWPORT

GRAPHICS TOOLBOX SYSTEMS MANAGEMENT ASSOCIATES, INC.

PROC W_DOT

45

W_DOT x, Y

DESCRIPTION:

Procedure W_DOT draws a single pixel at the specified world coordinates. X
and Y are the REAL values desired for the coordinates. If (X, Y) is outside
the currently defined window, the point will not be drawn; however, the world
cursor (W_X, W_Y) will be updated to the new coordinates in any event.

USAGE :

W_PLOT x, Y ,

DESCRIPTION:

Procedure W PLOT plots a line from the current world cursor position, (W_X,
W_Y), to the specified world coordinates. X and Y are REAL values for the
desired coordinates. Mode is a BYTE value indicating the desired plotting
mode. Legal values for Mode are O=move, 1=draw, 2=erase, 3=flip, and
4=dashed. If Mode is 4 then the dashed line pattern used is the current value
of S_pASHPIC. Please note that Mode is a required argument. If all or part of
the line to be plotted is not inside the current window boundaries, only the
part that is inside the boundaries will be drawn. Clipping will be done at the
viewport boundary. The world cursor will be update to the specified
coordinates.

NOTES:

1. You must define a viewport and window before plotting any data.

Copyright (C) 1986, SMA, Inc.

MODE

PLOT A LINE IN WORLD COORDINATESPROC W_PIDT

b6 SYSTEMS MANAGEMENT ASSOCIATES, INC. GRAPHICS TOOL BOX

PROC W‘DRAH

W_DRAW X, Y

DESCRIPTION:

Procedure W_DRAW draws a solid line from the current world cursor poaition,
(W_X, W_Y), to_the specified coordinates. X and Y are the desired REAL
coordinates. If all or part of the line is outside the current window limits,
only the part within the window boundaries will be drawn. Clipping will be
done at the viewport boundaries. The world cursor, (W_X, W_Y) will be updated
to the specified coordinates.

EXAMPLE:

PROGRAM SINPLOT
INCLUDE LIBRARY
INCLUDE SGD.E
INCLUDE WGS.E
INCLUDE REALFUNCS ; Trig functions from End User disk
DATA REAL PI 3.14159
REAL THETA

BEGIN
S_INIT
W_INIT
W_VIEW 20,20, 220,160 ; Define 200 x 140 pixel viewport
W_WINDOW 0.,-1., 2.*PI,1. ; Window X 0 to 2*pi, Y -1 to +1
W_CLEAR ; Erase viewport
W BOXVP ; Frame viewport
w:MOVE 0., o.
W PLOT 2.*PI, O. 4 ; Draw horizontal dashed centerline
TEETA = o.
W_MOVE THETA, SIN(THETA)
REPEAT

THETA - TUETA + PI/ 16.
W_DRAW THETA, SIN(THETA) ; Plot sine wave

UNTIL THETA >= 2.*PI

S END
END
The resulting image is shown in 10.

copyright (c) 1986, SMA, Inc.

Figure

USAGE :

DRAW A LINE IN WORLD COORDINATES

Figure 10: 51!!le Program Output

mc W_AXIS DRAW AXIS

USAGE:

W_AXIS Kind

DESCRIPTION:

Procedure W_AXIS draws an X or Y axis or both) for plotting data,
optionally with tic marks. Kind is an argument of type BYTE giving a code for
the kind and number of axes to be drawn. The axes will be drawn in the
currently defined window, starting from the world cursor position, (W_X, W_Y).
Rind should be specified by simply adding any of the following constants (which
are each masks for l-bit flags EXPORTed by WGS) together:

W X_AXIS Plot an axis in the X direction "-_,.

W_Y_AXIS Plot an axis in the Y direction ($02).

W:POS TICS Draw tic marks on the positive side of the axis
W_NEG:TICS Draw tic marks on the negative side of the axis
W_BOTH_TICS Draw tic marks on both sides of the axis ($0C).

Prior to calling W_AXIS, you should set the following EXPORTED variables, if
you want tic marks on your axes:

W_TIC_DX REAL Tic interval for X axis.
W_TIC_DY REAL Tic interval for Y axis.
W_TIC__SIZE INT Tic size in pixels.

Copyright (C) 1986, SMA, Inc.

($04)
($08)

Variable name Type Meaning

Constant name Meaning (and defined value)

($01)
($091

GRAPHICS TOOLBOX SYSTEMS MANAGEMENT ASSOCIATES, INC. 47

EXAMPLE:

PROGRAM SALESPLOT OWN
INCLUDE LIBRARY
INCLUDE SGD.E
INCLUDE WGS.E
BYTE NUMBUF [10]
REAL Y
WORD
BYTE MODE
DATA REAL SALES] = ; 1980 1990 sales in Smillions (projected after 85)

4.9, 4.3, 4.7, 5.1, 5.8,5.9, 6.3, 6.8, 7.3, 7.8, 8.8
BEGIN
S_INIT
W_INIT
W_VIEWPORT 40,20, 260,170 ; Viewport with room around outside
W_WINDOW 1980.,4. 1990.,9. ; Years in X, 4 to 9 in Y
WJMOVE 1980.,4.
W_TIC_DX = 1.0 1 year between X tic marks
W_Tic:DY= 0.5 0.5 between Y tic marks
W_Tlc:SIZE= 4 ; 4 pixel tic marks
W_—AXIS W X AXIS + W Y_AXIS + W NEG TICS ; X & Y axis with outside tics
FOR I= 1980 TO 1990 ; For all X_tic marks

W MOVE I:., 4. ; Move to tic mark
WORDSTR I-l900, NUMBUF ; Convert year to string
S_RELPLOT -6,-12,0 ; Move down 12 & left 6 pixels
S_TEXT NUMBUF ; Annotate year centered at tic mark

Y = 4.
REPEAT

REALSTR Y, NUMBUF, 4, 1 Make Y into string, e.g., 5.5"
W_MOVE 1980., Y
S_RELPLOT -30, -3, 0 ; Left & center of Y tic marks
S TEXT NUMBUE ; Annotate tic mark
I"= Y + 0.5

UNTIL Y > 9.0
MODE = l ; Draw
S_DASUPIC=$3333
w MOVE 1980., SALES [0]
FOR I= 1980 TO 1990
w_PLOT I:., SALES [I-1980] MODE
[F I >= 1985
MODE = 4 ; Dashed line for projected sales

S_MOVE 8,20
5 TEXT "Annual Sales in $Million", l
5:MOVE 100,150
S_TEXT "WIDGETS",O,2 ; 2X Title
IF GETC ; Wait for any key
S END

END-
This program produced the output in 11.

Copyright (C) 1986, SKA, Inc.

Figure

SYSTEMS HANAGEHENT ASSOCIATES, INC- GRAPHICS TOOL BOX

49SYSTEMS MANAGEMENT ASSOCIATES, INC.GRAPHICS TOOLBOX

._.'I’3ETE¥[—1T1:2..2%E

a41474;.I;.1.J!|Imbflu..d9 :4am5 aLG .h.$1,. =J4 d.
Output from W_AXIS ExampleFigure 11

moc W_ARCI

W_ARCI xc , YC ,

DESCRIPTION:

USAGE:

Angle, Aspect

Procedure W_ARCI draws a circle, an ellipse, or any part of a circle or
ellipse, with the present world cursor location, (W_X, W_Y) as the starting
point for the arc. X6 and Y0 are the desired REAL center coordinates for the
circle or ellipse (which does not have to be inside the window). Angle is the
desired REAL angle measured in degrees to be drawn (e.g., 360. for a full
circle). The are will be drawn counter-clockwise if Angle is positive. Aspect
is the desired aspect ratio (ratio of Y to X), normally 1.0 for a circle. On
completion, the world cursor (W_X, W_Y) will be left at the end point of the
arc. The arc will be clipped at the window boundaries if necessary-

Copyright (C) 1986, 511A, Inc.

DRAW AN ARC FROM AN ENDPOINT

EXAMPLE:

PROGRAM GRAPHIX OWN
INCLUDE LIBRARY
[NCLUDE SGD.E
INCLUDE WGS.E

BEGIN
S INIT
w‘mn
w:v1rw 0,0, 200,150
W_wLNDow o.,0., 200.,150.
w_110vr 150., 75.
W_ARC 100.,75., 360., 1. ; Draw circle centered at (100,75)
w ARC 0.,75., 30., l. ; Draw 30 degree are centered (0,75)

S_END
END

NOTES:

1. For very small circles, S_ARC will generally give a better appearing
circle than W_ARCI or W_ARC2.

2. u ARCl or W_ARCZ may seem to take some time to plot large circles which
are partially out of the window, since all the points on the circle are
computed even if they are not plotted.

3. The aspect ratio can be used to plot ellipses or correct the oblong
appearance of circles. Remember that the selection of viewport dimensions and
windows also effects the appearance of circles.

USAGE:

W_ARC2 Radius, Anglel, Ang1e2, Aspect

Procedure w_ARCZ is similar to W_ARCl except the world cursor is at the
center of the circle. Radius is the desired REAL value for the radius. Anglel
is the desired REAL starting angle for the arc. Angle2 is the desired ending
angle for the arc. Both angles are measured in degrees. Aspect is the REAL
aspect ratio (ratio of Y to X), normally 1.0. When the arc is completed, the
world cursor will be left at the ending point on the arc. The are will be
clipped at the window boundaries if necessary

Copyright (C) 1986, SHA, Inc.

DESCRIPTION:

DRAW AN ARC GIVEN T1115 CENTERPROC W_ARC2

SYSTEMS MANAGEMENT ASSOCIATES, INC. GRAPHICS TOOL BOX

EXAMPLE:

PROGRAM GRAPHIX OWN
INCLUDE LIBRARY
INCLUDE SGD.E
INCLUDE WGS.E
DATA PIE [1 = 0., 30., 100., 180., 250., 360.

BEGIN
S_INIT
W_INIT
w_v1r.w 0,0, 160,160
1.1 WINDOW -1.,—1., 1 1.

w:MOVE 0., 0.
FOR I = 0 T0 5
W_ARCZ 0.8, PIE[I] ; Draw a pie chart from data
W_DRAW 0. , 0.

S_END
END

Copyright (C) 1986, SMA, Inc.

GRAPHICS TOOLBOX SYSTDIS MANAGEMENT ASSOCIATESL INC. 51

In addition to the SGD and WGS, a group of graphics utility subroutines is
provided in source form in the file IMAGE.S. To use these subroutines, you may
INCLUDE IMAGE in your program, or use the EDlTor to extract only the
subroutines you need. The comments in the file explain the operation of the
subroutines in some detail, so you can modify them to meet your special needs.
These subroutines require the SGD, but not the WGS. The IMAGE subroutines are
described briefly below.

COPY IMAGE TO MEMORY

S_SY_IMAGE

DESCRIPTION:

Procedure S_SV_IMAGE copies all or part of high-resolution screen memory
into a memory array. The graphics cursor, (S_X, S_Y) is at the lower left hand
corner of the rectangular area to be saved. Buf is the address of an array of
type BYTE to hold the copy of the image. The size of Buf must be at least
DY*{(DX+S)/8) bytes. DX and DY are INTeger values for the size of the
rectangle to be saved, measured in pixels. These values should be positive and
not exceed the remaining screen size.

EXAMPLE:

BYTE FIG_SAVE [2000]

S_MOVE 0,0
S_SV_IMAGE FIG_SAVE, S_XMAX/Z, S_YMAX/Z ; Save l/Ath of screen

NOTES:

1. Color information is not saved (Commodore 64)-

Copyright (C) 1986, SMA, Inc.

Buf, nx, DY

PRDC s_sv_moa

11111.11! sunnourmss

SYSTEMS MANAGEMENT ASSOCIATES, INC. ' GRAPHICS TOOL BOX

GRAPHICS TOOLBOX SYSTEMS MANAGEMENT ASSOCIATES, INC.

PROC s_nc1._mcs

53

2110c s_m_1mca

1. See the source code comments for the file format.
2. Color information is not saved in the present implementation.

RESTORE IMAGE FROM MEMORY

USAGE:

S_RCL_IMAGE Buf, DX, DY

DESCRIPTION:

Procedure S_RCL_IMAGE restores an image or part or an image previously saved
using S_SV_IMAGE. Buf is the address of the array, DX and DY are the size of
the saved image in pixels (which must be the same as when it was saved), and
the graphic cursor is at the desired lower left hand corner for the image
(which does not have to be the same).

EXAMPLE:

S_RCL_IMAGE FlG_SAVE, S_XMAX/Z, S_YMAX/Z

COPY IMAGE TO DISK

USAG':

S_PUT_IMAGE Handle, Dx, DY

DESCRIPTION:

Procedure S PUT IMAGE copies all or rectangular portion of an image to a
disk file. Eaadle_is the file handle for a file previously opened in write
mode. DX and DY are INTeger values for the size of the image to be save in
pixels, and should be positive. The graphics cursor, (S_X, S_Y) will be used
as the lower left hand corner of the image.

EXAMPLE:

WORD MYFILE

MYFILE=OPEN("IMAGE1.G",‘W')

S_MOVE 0,0
S_PUT_IMAGE S_XMAX, S_YMAX ; Save whole screen

NOTES:

Copyright (C) 1986, SMA, Inc.

54 SYSTEMS MANAGEMENT ASSOCIATES, INC. GRAPHICS TOOL BOX

mac S_GET_IMAIE

mac S_PRT_IMAGE

RECALL IMAGE FROM DISR

USAGE:

S_GET_IMAGE Handle, Move

DESCRIPTION:

Procedure S_GET_IMAGE recalls an image previously saved with S_PUT_IMAGE on
disk. Handle is an open file handle for the file to read. Move is a_f1ag. if
FALSE, the image will be displayed in the same location it was stored at. If
TRUE, the image will be displayed with the lower left hand corner at the
current location of the graphic cursor.

EXAMPLE:

WORD MYFILE

MYFILE=OPEN("IMAGE1.G")

S_GET_IMAGE MYFILE, FALSE

USAGE:

S_PRT_IMAGE Handle, DX, DY Margin

Procedure S_PRI_IMAGE prints all or a rectangular portion of the high-
resolution graphics screen on a printer. Handle is the open file handle for
the printer. Dx and DY are positive integers giving the desired size to print
in pixels. Margin is and integer giving the desired left hand margin for the
printer in terms of dots. The image will be printed with the lower left hand
corner at the current graphics cursor position, (S_X, S_X).

EXAMPLE:

WORD PRTR

PRTR=OPEN("P",

S_MOVE o,o
S_PTR_lMAGE PRTR, S_XMAX, S_YMAX, 50 ; Print screen, 50 dot margin

Copyright (c) 1986, SKA, Inc.

DESCRIPTION:

PRINT IMAGE

1. IMPORTANT: Unfortunately, there is no "standard" way to tell a printer
to print graphics. Although the methods are usually similar, each printer
manufacturer chooses his own way to implement graphics commands. Since it is
impossible for SMA to deveIOp individual printer drivers for the hundreds of
printers available, we have instead included the source code to work with one
printer in the file IMAGE.S. In all likelihood, this subroutine will not work
with your printer until you modify it for the particular con-ands your printer
expects. Also, some printers (such as the Commodore 1526) are simply not
capable of printing bit-mapped graphics. You will need to consult your printer
manual to find out what your printer needs. In general, you will need to
change:

a. The escape sequence used to change the line spacing. In the
furnished subroutine, the sequence is ESC, n, ESC, T16. If you wind up with
horizontal bands of whitespace in your printed image, it may be because you
have not set the vertical line spacing to match graphics mode.

b. The escape sequence to enter graphics mode. In the furnished
subroutine, the sequence is ESC, G, nnnn, where nnnn is four ASCII decimal
digits giving the number of graphic bytes to follow. Some printers only send 3
digits or don’t send ASCII values, in which case you will need to alter the
WORDSTR call in the furnished procedure.

c. The sequence for enabling uni-directional made. Most printers have
more satisfactory vertical alignment in uni-directional rather than
bi-directional mode.

d. The sequence for restoring normal mode when the image is printed.
In the furnished subroutine, this sequence is ESC, L000, ESC, N, ESC, A, ESC,

e. 0n the Apple, ProDOS normally intercepts printer output and process
some data bytes as special commands. The furnished print driver defeats this
so that the data will be passed through. If you have a Commodore, you will
need to remove the statements which set APLPALF.

E. On the Commodore 64, PROMAL normally converts printer data output
from ASCII to "Commodore ASCII". When sending ESCape sequences or graphics
data, you will need to defeat this by setting CGAPUL (BYTE at address SODFA) to
0 at the start of the subroutine and restoring it to its entry state when the
procedure ends.

2. If you abort a program (or if it otherwise terminates) while printing a
graphics image, you will probably have to turn the printer off and back on to
get it to operate normally again.

3. The procedure S_PRINT in file IMAGE.S prints the entire screen.

Copyright (C) 1986, SHA. Inc.

GRAPHICS TOOLBOX SYSTEMS HANAGDIEIT ASSOCIATES, INC. 55

APPENDIX A

USER-DEFINED TEXT FONTS

The S_TEXT procedure is capable of drawing text using other character sets
besides the one provided. You may devise your own fonts, which may define
characters with any size and shape. Characters are drawn by S TEXT using
lines. The format for the font is very similar to the format for the shape
table used by procedure S_SHAPE. The file SGDFONT.A on the distribution disk
contains an assembly language definition of the standard font used by S_TEXT.
It contains comments explaining the format of a font table. You do not have to
use an assembler to generate a new font; it merely was a convenient way of
generating all the necessary data bytes for use with the SGD. You could define
your font with PROMAL DATA statements, read it from a separate file, etc.

By studying the comments and the sample font in SGDFONT.A, you should be
able to devise your own font. An average font table takes about 1K of memory
if all ASCII characters are defined. You can define a font which only has a
subset of the ASCII set (for example, only numeric digits for a big on-screen
scoreboard). You may have as many different fonts in memory at once as there
is room for. To change fonts, just change the SGD global variable S_PONT to
point to the start of the desired font table in memory. S_FONT should point to
the very first byte of the header for the font, as described in SGDFONT.A. Be
sure to fill in the name field of the font header with a name for your font.

When designing your font, bear in mind that the graphic cursor, (S_X, S_Y)
will be left wherever you complete a character. Therefore it is a good idea to
make the last part of each character definition 3 MOVE to the normal starting
position of the next character.

Copyright (C) 1986, SM, Inc.

SYSTEMS MANAGEMENT ASSOCIATES, INC. GRAPHICS TOOL BOX

COMMODORE 64 SPRITE EDITOR

The Commodore 64 version of the PROMAL GRAPHICS PACKAGE disk includes a
PROMAL program called SPRITEGEN (the source code is in file SPRITEGEN.S with
include files SPRITEGZ.S through SPRITEGG.S). This program allows you to
interactively define the shape of a sprite and see the sprite on the screen.
When you have defined your sprite, SPRITEGEN can write a file on disk contain-
ing the necessary PROMAL DATA statement to define the sprite in a program.

To use SPRITEGEN, execute it from the EXECUTIVE in the usual manner (it does
not use any graphics routines, so you don't need the SGD). Select a mode by
pressing a function key. You’ll be guided by prompts on the screen. Here are
the modes:

DRAM The sprite is drawn using the four cursor movement keys. As the cursor
is moved, it draws, erases, or just moves, depending on the current
"pen state". The pen state is set by pressing D (draw), E (erase) or
(move). The current state, which remains in effect until changed, is
shown on the screen. The actual size sprite will be displayed at the
lower right.

WRITE This permits a file to be written containing a PROMAL DATA statement
that defines a 64 byte array of data that will cause the commodore
hardware to properly render the sprite. You'll be asked for an array
name and file name. If the file name is entered without an extension,
".5" is added. Prior to starting the write, you are told whether the
file already exists and given the opportunity to cancel the write.

READ This permits a previously created sprite definition file to be read.
Then, further editing can be done, and finally the updated sprite
rewritten using WRITE mode.

EXIT Exits back to the EXECUTIVE.

SPRITEGEN writes each sprite definition to separate file. You may later
use the EDITor to combine several sprite DATA statements into a single file, or
simply INCLUDE each file in your application program source. A sample DATA
definition generated by SPRITEGEN is shown below:

DATA BYTE MISSLEI [] =
$FF,$FF,$FF, 380,300,301
$80,$OO,$01, .$80,$00,$01
$80,soo,$01, sso,soo,$01,
$80,$00,$01, $80,$00,$01
$30.$00.$01. $80.$00.$01,
$80.$00.$01. $80.$F4.$01.
$80.5F4.$01. $80.$F4.$01.
$30.$00.$01. $80.$00.$01.s80,$oo,$01, s80.$00,$01,
$30.$00.$01. $80.$00,$01.
$FF,$FF,$FF, $00

Copyright (C) 1986, SHA, Inc.

GRAPHICS TOOLBOX SYSTEMS HANAGEHENT ASSOCIATES, INC. 57

