
PR

(PROgrammer’s Micro Application Language)

LIBRARY MANUAL

SYSTEMS MANAGEMENT ASSOCIATES , INC.
3325 Executive Drive

Raleigh, North Carolina 27609
(919) 878-3600

Rev. C Sep. 1986

Copyright (C) 1986 SMA Inc.

For Apple and Commodore 64 Computers

PROHAL LIBRARY Systems Management Associates, Inc. -1

The PROMAL system contains a LIBRARY of predefined procedures and func-
tions which are automatically loaded into memory when PROMAL boots up. This
library provides input, output and utility routines which greatly ease the
programmer’s job. To use any or all of the LIBRARY routines, you simply need
to add the statement:

INCLUDE LIBRARY

near the start of your program. This statement tells the COMPILER to read the
definitions for the standard library. This is just a list of external proce-
dures and subroutines. You can display the list with 3 TYPE L command from the
EXECUTIVE.. The INCLUDE LIBRARY statement does NOT make your program any
larger. The library routines are always present in memory; the INCLUDE LIBRARY
statement merely tells the compiler what the names are and where they are.

Once you have defined the routines in the LIBRARY with the INCLUDE
statement, you may freely use them in your program. You call LIBRARY routines
in the same manner as other PROMAL routines. Unlike normal PROMAL routines,
however, most LIBRARY routines can be called with a variable number of argu-
ments, some of which are optional. For example, the LIBRARY function PUT can
have one or more arguments. In most cases, the optional arguments have a
default value, which will suffice for most cases. For special cases, you can
specify additional arguments which modify the way the routine works.

Table 1: LIBRARY Su-ary

Name Avail.* Description

ABORT AC L Abort program execution, optionally displaying message.
ABS AC L Absolute value of REAL value.
ALPHA Ac L Test if character is alphabetic.
BLRHDV AC L Block move.
CEKSUH AC L Compute 16 bit checksum of memory region.

CLOSE Ac L Close an open file or device.
CMPSTR AC L Compare strings.
CURCOL A3 L Determine current cursor column.
CURLINE AC L Determine current cursor line.
CURSET as L Position cursor on the display.

DIR as L Display file names matching a pattern
DIRDPRN A P Open disk directory for reading.
RDLINE Ac L Edit a line on the screen.
EXIT as L Exit from program, optionally with message.
FILL A6 L Fill a memory block with a constant.

FKEYGET AC L Get a current function key definition.
FREYSET Ac L Define a function key expansion string.
GEIARGS Ac L Split command line into arguments.
GETBLKF AC L Block-read from file.
GETC AC L Input one character from keyboard with echo to screen.

Copyright (C) 1986 SHA Inc. Rev. C

HAL LIBRARY

4-2 Systems Engagement Associates, Inc. PRDHAL LIBRARY

GETCF
GETKEY
GBTL
GBTLF
GETPOSF

GETTST

IELINE
INLIST
INSET

INTSTR
JSR
LENSTR

LOOKSTR

PUTBLKF

RANDOM
REALSTR

REDIRECT
RENAME
SETPOSF
SETPREFIX
STRREAL

STRVAL
SUBSTR
TESTREY
TDUPPER
HORDSTR
ZAPFILE

88888 88888888888888
8888 rurrr'rvac

88888 8

8888888888

E‘Pdr‘w'd r‘bL-‘r'r'
fi'flfi’dl“

r‘r‘r‘r‘m
hr'rrr‘r

Input one char. from a file or device.
Input character from keyboard, no echo to screen.
Input one line from the keyboard.
Input one line from a file or device.
Obtain current file position.

Test if T device is ready (serial port)
Return PROMAL version and machine code.
Input a line with screen editing.
Search linked list.
Test if a character is in a string.

Convert signed value to a string.
Call machine language subroutine.
Return length of string.
Load/unload/execute program or overlay.
Search a list of strings.

Return the largest of two or more arguments
Return the smallest of two or more arguments.
Load machine language program or memory image.
String copy or substring or concatenate strings.
Test if character is numeric.

Get ProDOS volume name for specified disk drive.
Open a file or device for input/output.
Formatted output with many options.
Formatted output to a file.
Exit from PROMAL system.

Output text to the display.
Block-write to file.
Output text to a file or device.
Obtain a pseudo-random number.
Convert a REAL value to a string.

Redirect standard input/output to file/device.
Rename a file.
Set desired position in a file (random access)
Set the path name for directory searches.
Convert a string to a REAL numeric value.

Convert a string to a numeric value.
Search for one string in another.
Test if a key is pressed on keyboard.
Fold lowercase letter to upper case
Convert an unsigned value to a string.
Delete a file.

* Note: Avail. meaning: First column indicates machine availability, A=Apple
II, C=Commodore 64.

=LIBRARY, P=PROSYS.
Second column indicates the required INCLUDE file,

Copyright (C) 1986 SEA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc.

A few unusual or system-dependent routines are defined in a separate
file called PROSYS.S. These routines are also always resident in memory, but
in order to use them you need to add the statement:

INCLUDE PROSYS

near the beginning of your program. This file also defines some
less-frequently-needed system variables.

The LIBRARY routines are summarized above. The "Avail." column indicates which
computers are supported (Apple or Commodore) and which INCLUDE file is needed
in order to use the routine (LIBRARY or PROSYS)

The following section provides a detailed description of each routine in
the LIBRARY, in alphabetical order. The USAGE line gives the syntax for
calling the routine. Words shown in CAPITAL LETTERS are required to be entered
as shown (although they do not have to be typed using upper case letters).
Words shown in lower case with the first letter capitalized are user-supplied
arguments. These arguments can be variables or constants or more complex
expressions. Arguments shown in square brackets, [and], are optional
arguments which may be included or left off at the programmer’s discretion.
The description of the routine will tell what actions are taken if the optional
arguments are not supplied. Ellipsis (...) are used to indicate an arbitrary
number of repetitions of an optional argument. For functions, the USAGE line
will show an assignment statement with the type of result returned indicated by
the variable name. For example:

USAGE: Bytevar = CRTC [(#Variable)

shows that the function GETC has one optional argument which must be enclosed
in parentheses if given, and returns a function result of type BYTE. The #
symbol is used in the USAGE line to emphasize that the optional argument must
be the address of the variable, not its value.

Some routines may have more than one optional argument, in which case some
or all may be specified. It is permissable to refer to the same LIBRARY routine
with different numbers of optional arguments specified in the same program.

Copyright (C) 1986 SHA Inc.

NW TO USE THE LIBRARY ROUTINE DESCRIPTIONS

Systems Management Associates, Inc. PROMAL LIBRARY

USAGE: ABORT [Arglist]

ABORT is a procedure which does not return to the calling program but
instead exits to the EXECUTIVE. Optionally, it may contain any arguments that
are legal for procedure OUTPUT, which will be output to the display.

EXAMPLE 1:

INCLUDE LIBRARY
DATA WORD OLDFILENAME "MYFILE.T"

BEGIN

ABORT "CAN’T FIND FILE OLDFILENAME

will display an error message on the display and abort to the PROMAL EXECUTIVE.
See OUTPUT for a description of the arguments which may be used.

USAGE: Realvar = ABS (Value)

Function ABS returns the absolute value of a real number. The function
returns type REAL. ABS(X) returns X if X is positive and -X if X is negative.

EXAMPLE 1:

INCLUDE LIBRARY

REAL x
REAL Y

Y = ABS(X—1.)/2.

NOTE:
1. In PROMAL version 2.0 and earlier, ABS was not included in the the standard
LIBRARY, but was in file REALFUNC.S instead. For version 2.1 and later, it is
in the LIBRARY for improved convenience, performance, and compatibility with
IBM PROMAL.

Copyright (C) 1986 SHA Inc. Rev. C

ABSOLUTE VALUE

ABORT PROGRAM

PROMAL LIBRARY Systems Management Associates, Inc. 4-5

USAGE: Bytevar = ALPEA(Char)

Function ALPHA returns TRUE if the argument is alphabetic. The argument
Char is expected to be type BYTE (not a string!). Both upper and lower case
letters will return TRUE.

EXAMPLE 1:

INCLUDE LIBRARY

BEGIN

CHAR=GETC
IF ALPHA(CHAR)

COPY BLOCK OF MEMORY

USAGE: BLKHDV #From, #To, Count

BLKMOV is a procedure for copying a block of memory to another location.
#From is the starting address. Count is the number of bytes to copy. #To is
the destination starting address. The block being copied can overlap the
destination without a problem.

EXAMPLE 1:

INCLUDE LIBRARY

WORD VALS [200]
BYTE BUE[40]
WORD

BEGIN

BLKMOV $0400, BUF, 40

copies 40 bytes (decimal) starting at to BUF.

Copyright (C) 1986 SMA Inc. Rev. C

BLKMOV #VALS[I], BUF, $8

moves 8 bytes (4 words) starting at the Ith word of VALS to BUF Note the
operator before VALS which is required for proper operation.

EXAMPLE 2:

$0400

PRDC BLKHDV

TEST IF CHARACTER IS ALPHABETICFUNCAIJ’NA

Systems Management Associates, Inc. PROMAL LIBRARY

COMPUTE CHECKSUM 0F BLOCK OF MEMORY

USAGE: Wordvar = CNRSDM(#Start, Size)

Function CHKSUM computes the 16 bit checksum of a block of bytes in memory
starting at address Start. Size is the number of bytes to checksum. The
returned value is the sum of all the bytes, modulo 65536.

EXAMPLE 1:
INCLUDE LIBRARY

BYTE ARRAY[1000]
WORD ARYCHK

ARYCHK = CHKSUM(ARRAY,1000)

IF CHKSUM(ARRAY,1000) <> ARYCHK
PUT NL,"ARRAY has been modified!

CLOSE FILE 0R DEVICE

USAGE: CLOSE Handle

CLOSE is a procedure which closes a specified word file Handle. The
argument Handle must be the handle for a previously opened file.

EXAMPLE 1:

INCLUDE LIBRARY
WORD INPUTFILE ;File handle
BEGIN

INPUTFILE=OPEN(INPUTFILE)

CLOSE INPUTFILE ;Done with file

It is not normally necessary to close files in a program since all open files
will be closed automatically by the EXECUTIVE when exiting from a program. If
you are planning to generate stand-alone application programs which will be run
without the EXECUTIVE (as described in the PROMAL DEVELOPER’S GUIDE), then you
should be careful to close all files, since they will not be automatically
closed. Also if you work with several files in a program, it is a good idea to
close a file as soon as it is no longer needed, since a limited number of files
may be open at once. A power failure or other system failure may leave a
file written to disk incomplete unless it has been closed. Be careful not to
close a file which have already closed previously.

Copyright (c) 1986 SMA Inc. Rev. c

you

PROMAL LIBRARY Systems Management Associates, Inc.

Systems Manager-em: Associates, Inc. PROMAL LIBRARY

UNTIL KEYWORD[I]=0

tests if the string LINE matches the Ith keyword of a table, up to the length
of the keyword. (Note: See function LOOKSTR for a better way to do this)

COMPARE STRINGS

USAGE: Bvar = CHPSTR(String1, Op, String2 [,Fold [,Limit]])

Function CMPSTR compares two strings. Stringl and Stringz are the address-
es of the two strings to be compared, and 0p is a string (not a character!)
specifying which compare operation is desired, chosen from:

n<=n u<>u "=u n>=u

Fold is an optional Boolean (BYTE) argument defaulting to FALSE which, if TRUE,
will cause lower case letters to be considered as equal to their upper case
equivalents. Limit is an optional argument specifying the maximum number of
characters to compare in the string, defaulting to 255. The collating sequence
for the comparison is the ASCII character set. Two strings are equal if and
only if they are the same length and have the same content (or equivalent if
Fold is TRUE). If two strings of different lengths match up to the end of the
shorter string, the longer string is considered greater

EXAMPLE

INCLUDE LIBRARY

BYTE LINE[81]

GETL LINE
IF CMPSTR (LINE,

tests if the string LINE is greater than

EXAMPLE 2:
DATA WORD KEYWORD="DRAW","MOVE","ERASE","QUIT",O

I=0
REPEAT

IF CMPSTR (LINE, "=", KEYWORD[I] TRUE, LENSTR(KEYWORD[I])

I=I+1

Copyright (C) 1986 SM Inc. Rev. C

..>....<..

USAGE: Bytevar = CURCOL

Function CURCOL returns the current column number of the text cursor on the
screen. The leftmost column is column 0, not column number 1.

EXAMPLE 1:

INCLUDE

?A
CON MAXCOL 79 ; Screen width-1, Apple.,
2C
CON
?

MAXCOL 39 ; Screen width-l, Commodore

BEGIN

IF MAXCOL-CURCOL < LENSTR (STRING) ; won’t entirely on current line?
PUT NL

PUT STRING

RETURN CURRENT LINE NUMBER OF CURSOR

USAGE: Bytevar = CURLIEE

Function CURLINE returns the current line number of the text cursor on the
screen. The topmost line is line not line number 1.

EXAMPLE:

INCLUDE LIBRARY
BYTE SAVELOC

BEGIN

SAVELOC=CURLINE ;Save line we’re on
CURSET 0,0 ;Move to home position
PUT "Error, please try again."
CURSET O,SAVELOC ;Back to where we were, col 1.

Copyright (c) 1986 SHA Inc. Rev. C

RETURN CURRENT COLUMN OF CURSOR

PROMAL LIBRARY Systems Management Associates, Inc. 4-9

USAGE: CURSET Column, Line

Procedure CURSET sets the screen cursor to a specified column and line.
Column is the desired column, and Line is the desired line number. The home
position on the screen (the upper left hand corner of the screen) is location
(0,0) not (1 1‘-

EXAMPLE 1:

INCLUDE LIBRARY
BYTE I

ééém
éfifisgr 0,1

moves the cursor to the first column of text row I on the screen.

FUNC DIR EXAMINE DISK DIRECTORY

USAGE: Intvar = DIR(Pattern [,Mode])

Function DIR displays the names of any files in a disk directory. For the
Apple II, Pattern is the desired directory name. No filenames or wildcards are
recognized. For the Commodore 64, Pattern is a filename string which may
include wildcards * and ?. The Pattern may optionally have a drive number
prefix and a file extension (which can also be a wildcard). The * wildcard
matches ANY string and the ? wildcard matches any single character. The
function returns an INTeger value indicating the number of files which matched
the Pattern (including subdirectories for the Apple) if positive or 0, or minus
an error code if negative. The absolute value of the error code has the same
meaning as for IOERROR for function OPEN. Mode is an optional argument,
defaulting to 1. If Mode is 1 or unspecified, a normal display of file names
is made. If Hode=0, then the directory will be tested for matching entries and
Intvar returned, but nothing will be displayed. Alternatively, Mode can be an
open file handle. In this case, the output is directed to this file or device
instead of the screen.

For the Apple II, the format of the output display will be the same as for
the FILES command in the EXECUTIVE if the output is to the screen, or will be
one filename per line for any other file or device. For the Commodore 64, the
format of the output display will be the same as for Commodore BASIC. The
pattern matching is performed by the Commodore ROMS resident in the disk drive,
and therefore operates as described in the Commodore disk manual. In particu-
lar, you should note that a pattern of "*.S" will not match all the files
ending in ".S", but will instead match ALL the files on the disk. This is
because Commodore has chosen to implement the "*" wildcard to mean, "match
anything at all“ (including ".").

Copyright (C) 1986 SEA Inc. Rev. C

(1.1)

SET CURSOR POSITION

4-10 Systems Management Associates, Inc. PROMAL LIBRARY

EXAMPLE 1 (for COMMODORE 64):

INCLUDE LIBRARY

FUNC DIROPER APPLE II ONLY

BEGIN

IF DIR("OLDFILE.D")=1 ; file exists?
PUT NL,"Want to use existing file?" ..

EXAMPLE 2 (for Apple II):

INCLUDE LIBRARY

DATA WORD SUBDIR="ACCOUNTS/" ; Sub—directory in current prefix.
WORD NUMACCTS

NUMACCTS=DIR(SUBDIR) ; Display file name in our sub-directory

NOTE:
I. For the Apple, any file name part will be ignored. For example,
"2:ACCOUNTS/MYFILE.T" is equivalent to "2:ACCOUNTS/".

OPEN DIRECTORY FOR READING

USAGE: Handle = DIRDPEI(Dirname [, Mode])

Function DIROPEN is used to open a disk directory for reading on the Apple
II. Dirname is a string specifying the directory name. Mode is the optional
access mode character, which must be ’R’ (read access) if specified. Opening a
directory for writing is not permitted by ProDOS. DIROPEN returns a file
handle (type WORD) as in a normal OPEN function, if successful. Once opened,
the directory can be read like an ordinary file. Please consult the ProDOS
reference manual for information on directory organization.

EXAMPLE 1:

INCLUDE LIBRARY
INCLUDE PROSYS
DATA WORD PATH
WORD DIRHANDLE

BEGIN

DIRHANDLE DIROPEN(PATH)
IF DIRHANDLE = O
PUT NL,"Can’t open directory for drive 2"

Copyright (c) 1986 SHA Inc. Rev. C

PROMAL LIBRARY Systems Hana; Associates, Inc. 4-11

NOTE:
1. You will need to INCLUDE PROSYS near the beginning of your program in order
to use DIROPEN.
2. Although DIROPEN is only available on the Apple, you may open a Commodore
64 directory using the OPEN function (see OPEN).
3. The file PRODOSCALLS.S contains examples of a way to get or set file
attributes on the Apple without reading the directory.

EDIT LINE ON SCREEN

USAGE: Bytevar = EDLINE(String [,Limit [,Mode

Function EDLINE is used to allow on-screen editing of a single line of text
in the same way as is supported by the PROMAL EXECUTIVE. String is the address
of the string to be displayed and edited in place. String should be the
address of a buffer large enough to hold at least Limit+1 characters. Limit is
an optional parameter defaulting to 80 which is the maximum number of charac-
ters acceptable in the line. Mode is an optional argument defaulting to $00
which controls several options based on individual bits in Mode, as follows:

Bit 0 = l (Mode=$Ol) means display the line in reverse video (highlighted).
means display the line in normal video.

Bit 1 (Mode=$02) means return "raw" function key codes from the keyboard.
means expand the function keys to their current definitions (see
FKEYSET).

Bit 2 l (Mode=$04) means return "strange" control keys (explained below).
means ignore "strange" control keys.

Bit 3 = l (Mode=$08) means initially display cursor at the column specified
in the BYTE variable Col, if specified, otherwise at the first
character.
means initially display cursor after last character.

The last optional argument, #001, is ignored unless bit 3 of Mode is 1. In
this case, #601 is the address of a variable of type BYTE which contains the
desired starting column for the cursor. If the specified column is greater
than the length of the line, the cursor will be positioned immediately after
the last character. 0n exit from EDLINE, the variable C01 is updated to the
position of the cursor at the time of exit from EDLINE.

Mode bits may be combined. For example Mode=$09 enables reverse video and
positions the cursor at the start of the field instead of the end (assuming no
#001 argument is specified).

Function EDLINE returns a byte which is the terminator entered. For normal
Mode, this will be a carriage return ($0D). However, if bits 1 and/or 2 of
Mode are 1, it could be a function key, cursor up/down key, control key, etc.
"Strange" control keys are defined as those control keys which are not allowed
for line editing, or keys returning a value greater than $7F other than
function keys. See Appendix B for key code values. For the Apple, function
keys are defined as either Apple key in conjunction with a number key 1 though

Copyright (C) 1986 SHA Inc. Rev. C

[.#C01]]])

4-12 Systems Hanag Associates, Inc. PROMAL LIBRARY

yiOVSTR “This is a line to be edited. LINE
COL=3
CURSET 8,0
KEY EDLINE(LINE, 40, $019,

When EDLINE is called, it will display the String passed (which can be
null), starting at the current cursor position. It will then output enough
blanks so that a total of Limit characters are displayed. This is particularly
useful when bit 0 of Mode is set to l to select reverse video, since EDLINE
will display a reverse video "box" indicating the allowable "field size" on the
screen. EDLINE will then position the cursor after the last character of the
string (assuming bit 3 of mode is not set) and wait for keyboard input. All
line editing keys allowed by the PROMAL EXECUTIVE can be used in the same
manner with EDLINE, including CTRL-B to recall a prior line entry. See Table l
of the PROMAL USER’S GUIDE for a complete list of supported editing keys. The
String will be edited "in place".

Note that during input, the cursor is held "captive" in the limits of the
line, making it suitable for various kinds of data entry. By setting Mode
appropriately, EDLINE can become the basis of an editor or field-oriented data
entry system. By setting bits 2 and 3 (Mode=$08+$04) and specifying #001, you
can detect, for example, when a "cursor up" key is entered (by the value
returned by the function), and what column the cursor was in at the time (by
the value returned in C01). You could then call EDLINE again to edit a string
which is on the line above the present line on the screen, with the same
arguments, and the cursor would appear initially in the same column as on the
previous line.

EXAMPLE 1:

INCLUDE LIBRARY

BYTE DUMMY
BYTE BUFFER[81]

BEGIN

MOVSTR "ERASE ",BUFFER
DUMMY=EDLINE(BUFFER) ; let user complete or change the command

This program fragment will display the word "ERASE" on the screen, followed by
a blank and the cursor. The user could then complete the command as desired.

EXAMPLE 2:

INCLUDE LIBRARY

BYTE LINEMI]
BYTE COL

KEY

Copyright (c) 1986 SH; Inc. Rev. c

#60L)

BYTE

PROMAL LIBRARY Systems Management Associates, Inc. 4-13

This program fragment will display the specified string starting at the 8th
column of the first line on the screen, in a reverse video “box" 40 characters
long (which will wrap around to the next line on the Commodore 64), and will
position the cursor on the "s" in "This". The line can then be edited by the
user in the usual manner. when a "strange" key (such as cursor up or down) is
entered, EDLINE returns the edited string in LINE, sets KEY to the key code for
the strange key, and updates Col to the cursor position at the time the key was
pressed.

NOTE:
1. It is possible, with care, to change almost all of the choices for editing
keys for EDLINE, as well as the cursor blink rate. You can also disable CTRL-C
(for the Apple) or other editing keys if you wish. See Appendix G.

EXlT FROM PROGRAM

USAGE: EXIT [Arglist]

EXIT is a procedure which does not return to the calling program but
instead exits to the EXECUTIVE (or to the parent program if this program was
LOADed by another). Optionally, the call may contain any arguments that are
legal for procedure OUTPUT, which will be output to the display.

EXAMPLE 1:

INCLUDE LIBRARY

EXIT "Program Complete.

This will display a message on the display and exit to the PROMAL EXECUTIVE.
See procedure OUTPUT for a description of what arguments may be used.

FILL A BLOCK 0F MEMORY WITH A CONSTANT

USAGE: PILL #From, Count [,Byteval]

FILL is a procedure which fills a block of memory with a specified value of
type BYTE. {Pro- is the desired starting address. Count is the number of
bytes to fill. The optional argument Byteval is the value to be placed in each
byte, defaulting to $00. FILL operates faster than a programmed loop.

Copyright (C) 1986 SEA Inc. Rev. C

much

PROC EXIT

4-14 Systems Management Associates, Inc. , PROMAL LIBRARY

INCLUDE LIBRARY

BEGIN

CON BUFSIZE 500
BYTE BUF[BUFSIZE]

FILL BUF, BUFSIZE

zeroes the array BUF of BUFSIZE bytes.

EXAMPLE 2:

BYTE MYSTRING[20]

MYSTRING, LENSTR(MYSTRING),

blank fills the string MYSTRING up to its present length.

When using FILL to zero an array of type WORD or INT, remember that the size
needed for the second argument should be twice the array dimension (six times
for REAL).

GET A CURRENT FUNCTION KEY DEFINITION STRING

USAGE: FKEYGET Keynumber, #String

Procedure FKEYGET sets a string to the currently-defined function key
substitution string. Reynu-ber is the desired function key number, from 1 to
8. #String is the address of a buffer at least 32 characters long to receive
the desired string.

EXAMPLE 1:

INCLUDE LIBRARY

BYTE KEYDEF[32]
WORD I

BEGIN

PUT NL,"The current function key definitions are:
FOR i=1 T0 8

FKEYGET I,KEYDEF
OUTPUT "#cifI #S",I,KEYDEF

Copyright (C) 1986 SBA Inc. Rev. C

FROG FEYGET

FILL

size

EXAMPLE 1:

PROMAL LIBRARY Systems Management Associates, Inc. 4-15

NOTE:
1. To define function key strings, see FKEYSET.
2. For programs created with the optional GENMASTER utility of the optional
Developer’s system, function key definitions are initially null strings until
defined by calls to FKEYSET.

DEFINE A FUNCTION KEY EXPANSION STRING

USAGE: FREYSET Keynumber, String

Procedure FKEYSET is used to define a function key substitution string of
up to 31 characters. Reyna-her is the desired function key number, 1 to 8.
String is the desired function key substitution string.

Once the function key substitution string is defined, pressing the function
key in the PROMAL EXECUTIVE, or during data entry to a GETL, EDLINE, or INLINE
call, will cause the defined string to replace the current line. Up to 31
characters may be defined. Only normal, displayable characters ($20 through
$7E) should be used.

EXAMPLE 1:

INCLUDE LIBRARY

BEGIN

FKEYSET 2,"COMPILE 2:MYPROG"

defines function key F2 to be "COMPILE 2:MYPROG".

NOTE:
I. On the Apple II, function keys are activated by holding down either Apple
key and pressing a number key 1 through 8.
2. You can ignore function keys in EDLINE/INLINE/GETL by using FKEYSET to set
the key definition to a null string (e.g., FKEYSET 1,"").
3. You can cause the function keys to return their original key code in
EDLINE/INLINE/GETL by using FKEYSET to define a string consisting of the key
code (see Appendix B) followed by a zero byte (e.g., FKEYSET 1,"\85" for the
Commodore 64 F1 key).
4. Function key settings defined in a program remain in effect when control is
returned to the EXECUTIVE.

Copyright (C) 1986 SMA Inc. Rev. C

4-16 Systems Management Associates, Inc. PRDHAL LIBRARY

PROMAL LIBRARY Systems Management Associates, Inc. 4—17

IMIYIFII LIEI I I I I II IYI°IUIRIFIIILIEI°I

IMIYIFIIILIEI°I I I I I6I°IYI°IUIRIFIIILIEI°I

SPLIT A COMMAND LINE INTO ARGUMENTS

USAGE: Bytevar = GETARGS(Argline, #Ptrlist [,Limit [,Sep]])

Function GETARGS is used to parse a line into a list of strings, one string
for each argument. Argline is the string argument which is to be separated
into arguments. #Ptrlist is the address of an ARRAY of WORD variables. The
function will return a list of pointers to the arguments in this array. Limit
is an optional argument specifying the maximum number of arguments which may be
returned. Sep is an optional BYTE argument defaulting to ’ ’, which specifies
what character is to be considered the separator of arguments. The GETARGS
function will modify the Argline string in place, by installing a 0 byte at the
end of each argument, replacing the first separator (usually a blank) after
each argument. Each entry in the pointer list will be filled with a pointer to
the first non-blank character of the argument. The returned value of the
function is a BYTE variable indicating the number of arguments returned in the
pointer list.

EXAMPLE I:

INCLUDE LIBRARY
BYTE ARGLINE[81]
WORD ARGLIST[8]

BEGIN

MOVSTR "MYFILE 6 YOURFILE" ARGLINE

N - GETARGS(ARGLINE,ARGLIST)

will return N=3, and set ARGLIST[0]=“MYFILE", ARGLIST[1]="6", and
ARGLIST[2]="YOURFILE". In an actual application, ARGLINE would typically
be read from the keyboard instead. The effects of GETARGS on the ARGLINE array
in memory are illustrated below (0 indicates $00 terminator):

Before GETARGS call

ARGLIST[0] ARGLIST[1]

l— l—ARGLIST[2]
After GETARGS call

NOTE:
1. Since the Argline string is modified in place, if you alter any of the
strings returned in ARGLIST, you should be careful not to make them larger or
they will affect the content of neighboring strings.

Copyright (C) 1986 SBA Inc. Rev. C

READ A BLOCK FROM A FILE INTO MEMORY

USAGE: Wordvar = GETBLKF(Handle, #Start, Maxsize)

Function GETBLKF does a block read from a file or device. Handle is the
file handle of the previously opened file (see OPEN for more information on
file handles). #Start is the desired address where the data should be
installed in memory. Haxsize is the maximum number of bytes to read. Wordvar
is returned as the number of bytes actually read. If Wordvar is less than
Maxsize, then end-of-file was encountered before Maxsize bytes could be read.
GETBLKF does not recognize any record boundaries or delimiters except
end-of—file. It is the complementary function to PUTBLKF.
It is the fastest way to read data from disk.

EXAMPLE 1:

INCLUDE LIBRARY

WORD SCREENFILE ;File handle
WORD READSIZE bytes actually read

BEGIN

SCREENFILE=OPEN("SCREENDATA.D") ;0pen for reading
IF SCREENFILE=O ;0pen error?
ABORT "#CCant read SCREENDATA.D file!

READSIZE=GETBLKF (SCREENFILE,$0400,1000)

reads 1000 bytes (decimal) from the file "SCREENDATA.D" into memory starting at
location $0400.

NOTE:
1. The predefined (In the LIBRARY) variable DIOERROR can be checked after a
GETBLKF operation to test for possible errors, if desired. If DIOERROR=O, the
read was completed normally. If DIOERROR = 2, a disk read error occurred (in
which case GETBLKF will return as much as could be successfully read before the
error).
2. When using GETBLKF to read data into memory starting at a particular
element of an array, be sure to specify the # operator to indicate that you
want the address of the array element, not the value. For example,

READSZ = GETBLKF(HANDLE, #BUF[I,0])

3. IMPORTANT: For Commodore 64, GETBLKF is the only Library routine which uses
DYNODISK, if it is enabled. You must not mix GETBLKF calls with other,
non-DYNODISK read calls (such as GETLF or GETCF) on the same file while
DYNODISK is enabled. Also, do not mix GETBLKF calls with DYNODISK off and
DYNODOISK on in the same file. To disable DYNODISK from within a program, set
C64DYNO to 0 (defined in file PROSYS.S).

Copyright (C) 1986 SHA Inc. Rev. C

4-18 Systems Managment Associates, Inc. PROHAL LIBRARY

_.,-

'—
—- —— — *[Emmi—r— :--

::_:__::;:.1=___423:5?:—:-_—_-

FUNC GETC RETURN ONE CHARACTER FROM KEYBOARD

USAGE: Bytevar = GETC[(#Variab1e)]

GETC is a function (not a procedure! which gets one character from the
keyboard and displays it on the screen. It has one Optional argument which is
the address of a variable to receive the character entered. It returns an
argument of type BYTE, which is the character read. The same character will be
installed in the variable whose address is the argument, if present. The
optional argument allows a convenient way to save the character and test it in
the same statement. GETC blinks the cursor while waiting for a key to be
pressed, and echoes the key to the screen.

CAUTION: If you use the optional second argument, be sure to specify the
operator in front of the variable to receive the character. Otherwise, the
character will be installed somewhere in the first page of memory, correspond-
ing to whatever value happens to be in that variable at the time, possibly
corrupting the PROMAL system.

EXAMPLE 1:

INCLUDE LIBRARY

BYTE NAME[41]
WORD 1

BEGIN

I=0
WHILE ALPHA(GETC(#NAME[I]

1=1+1
NAME[I]=0

This fills the buffer NAME with characters from the keyboard until a non-alpha-
betic character is entered, and terminates it with a $00 byte to make it a
string. Alternatively, the form without an argument could be used:

I=0
REPEAT

BUF[I]=GETC
I=I+1

UNTIL NOT ALPHA(BUF[I-l])
BUF[I]=0

NOTE:
1. GETC processes the Alpha lock key (CTRL-A) internally.
2. GETC treats CTRL-Z as end-of—file from the keyboard and therefore returns
$00 instead of $1A for CTRL-Z.
3. If you wish to get a key without keyboard echo, see GETKEY.
4. If you wish to test if a key is pressed without waiting for one, see
TESTKEY.
5. It is possible to change the cursor blink rate. See Appendix G.

Copyright (C) 1986 SHA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-19

4-20 Systems Management Associates, Inc. PROMAL LIBRARY

GET A BYTE FROM A FILE 0R DEVICE

USAGE: Flagbyte = GETCF(Handle, #Variable)

GETCF is similar to GETC but accepts input from a file or device. The
first argument is a WORD variable which is the file Handle (see OPEN for
information on file handles). The second argument specifies the address of
the variable to receive the character. GETCF returns FALSE if end-of—file is
encountered and TRUE otherwise. Be sure to remember to specify the # operator
on the second argument.

EXAMPLE 1:

INCLUDE LIBRARY

BYTE CHAR
WORD INFILE
WORD COUNT

BEGIN

COUNT=0
INFILE=0PEN(CARG[1])
WHILE GETCF(INEILE,#CHAR)

COUNT=COUNT + (CHAR=’,’) ; bump count if is ’,'
OUTPUT "#c#s contains #W commas.",CARG[l],COUNT

This will read the file specified on the command line and display a count of
all commas in the file.

NOTE:
1. GETCF is not limited to reading text files. It will correctly return all
256 possible values which can be read from a file, including $00.
2. If the handle is STDIN (the keyboard), then characters are processed as
described for GETC above, and GETCF returns TRUE when CTRL-Z is entered.
3. 0n the Apple after GETCF returns, DIOERR will be 0 normally and 2 if a disk
read error occurred, if you wish to check it.

RETURN ONE CHARACTER FROM KEYBOARD WITHOUT ECHO

USAGE: Bytevar = GETKEY[(#Variable)]

GETKEY is a function (not a procedure!) which gets one character from the
keyboard without displaying it on the screen. It has one optional argument
which is the address of a variable to receive the value input. It returns an
argument of type BYTE, which is the character read. The same character will be
installed in the variable whose address is the argument, if present. The
optional argument allows a convenient way to save the character and test it in
the same statement. Appendix 3 gives the key codes returned by GETKEY.

Copyright (C) 1986 SKA Inc. Rev. C

FDIC GETCF

_ _-:_=_"_-_—_E=5.1:.
—_='._-- —.__'__'.1'_-
"-'— =“..‘7="__IL
'.|'_|: Lul- I III -'I'I'I'II'
-|.

I...-

Il-I—L-L-II-_-I.--

CAUTION: If you use the optional second argument, be sure to specify the
operator in front of the variable to receive the character. Otherwise, the
character will be installed somewhere in the first 256 bytes of memory,
corresponding to whatever value happens to be in that variable at the time,
possibly corrupting PROMNAL or the operating system.

EXAMPLE 1:

INCLUDE LIBRARY

PUT NL,"Press any key when ready, or * to exit."
IF GETKEY = '*’
ABORT "#cProgram terminated."

NOTE:
1. GETKEY processes Alpha-lock (CTRL-A) internally.
2. GETKEY returns CTRL-Z as $lA, without special treatment.
3. You may alter the cursor blink rate. See Appendix G.

GET LINE OF TEXT FROM KEYBOARD

USAGE: can. #Buffer [,Limit]

Procedure GETL inputs a line from the keyboard, allowing all editing
(backspace, etc.) supported by the PROMAL EXECUTIVE prior to the carriage
return. GETL has one required argument which is the address of the buffer to
receive the line. A second optional argument can be used to specify the
maximum number of characters to be read. The default limit is 80 characters.
The line will be returned as a string, with a $00 byte replacing the carriage
return at the end of line. The carriage return is not returned. Therefore the
buffer for the default GETL should be 81 bytes long to allow for the full
input.

EXAMPLE 1:

INCLUDE LIBRARY

éfiém

BYTE LINE[81] ;Input line buffer

{aéém
GETL LINE

Copyright (C) 1986 SMA Inc. Rev. C

This inputs a line from the keyboard into the LINE buffer.

EXAMPLE 2:

PROMAL LIBRARY Systems Management Associates, Inc. 4-21

BYTE PAGE [41,25] Array of 25 lines of up to chars each
WORD I

GETL

This reads a line form the keyboard into the Ith line of the PAGE array, up to
40 characters long.

NOTE:
1. Table 1 in the PROMAL LANGUAGE MANUAL lists the line editing keys.
2. Due to buffer size limits, the maximum line size allowable for the
Commodore 64 is 80 characters, and 127 characters for the Apple II.
3. It is possible to alter the cursor blink rate and the editing keys used by
GETL. See Appenix G.
4. GETL always clears a space on the screen large enough to enter Limit
characters by outputting blanks from the present cursor position, before
accepting input (at the original cursor position). This may cause the screen
to scroll if the initial cursor position was within Limit characters of the end
of the screen.

GET LINE OF TEXT FROM FILE 0R DEVICE

USAGE: Flagbyte = GBTLF(Handle, #Buffer [, Limit])

Function GETLF (not a procedure!) inputs a line from a file or device
specified by the file Handle, which is the first argument. See OPEN for more
information on file handles. The second argument is the address of the buffer
to receive the line. An optional third argument can be used to specify the
maximum number of characters to be returned. If the line contains more than
Limit characters, the entire line is read up to and including the carriage
return, but only the first Limit characters are copied into the buffer. The
line will be terminated by a $00 byte and will not include the carriage return.
The returned value of the function is TRUE normally and FALSE (0) if
end-of-file was encountered before any bytes could be read from the file or
device.

EXAMPLE 1:

INCLUDE LIBRARY

WORD INPUTFILE
BYTE LINE[41] ; Input buffer

BEGIN

INPUTFILE=OPEN("MYFILE.T")
IF INPUTFILE=O ; open error?
ABORT "#CCan’t open MYFILE.T Program Aborted"

WHILE GETLF(INPUTFILE,LINE,40) ;on1y chars max please
PUT NL,LINE

This will display the first characters of every line of file MYFILE.T.

Copyright (C) 1986 SHA Inc. Rev. C

#PAGE[0,I], 4o

4-22 Systems Management Associates, Inc. PROMAL LIBRARY

=.=..-F:E_'-__-=——'- r.—_-.

allllrr"——"—
- —--I'-I I

NOTE:
1. Due to buffer size limitations, a maximum of 127 characters can be read
for a line. On the Commodore 64, if the Handle is STDIN (the keyboard), this
is reduced to a maximum of 80 characters. To read lines larger than 127
characters from a file, you could use GETCF instead, installing characters in
your own buffer one at a time, checking for a carriage return.
2. If the Handle is STDIN (the keyboard), the alpha-lock character (CTRL-A)
will be processed internally, and CTRL-Z will be treated as end—of-file if it
is the first character of the line.
3. When using GETLF to input starting at a particular element of an array,
be sure to specify the # operator to indicate the address of the element. Like
all PROMAL routines processing strings, the GETLF procedure expects the address
of the desired destination for the string.

USAGE: Wordvar = GETPOSF(Hand1e [,#Segvar])

Function GETPOSF returns the relative position of the next byte to be
read/written in a file. Handle is the file handle of a previously OPENed
file. Wordvar is returned as the relative offset from the beginning of the
file in bytes, from 0 to 65535. #Segvar is an optional address of a word
variable to receive the high order 16 bits of the relative offset. It is
necessary to specify #Segvar only if the file is more than 64K bytes long and
you wish to know the full offset into the file. GETPOSF should not be used for
devices.

A common use of GETPOSF is to save the current file position for a file
which has been partially read but must be closed temporarily for some reason
(such as changing disks during a single-drive copy operation), and then
restoring the file to the same position so that you can continue reading.

EXAMPLE 1:

INCLUDE LIBRARY

WORD CURPOSN
WORD FILE

FILE=0PEN("MYFILE.D",R)

CURPOSN=GETPOSF(FILE)
CLOSE FILE

FILE=0PEN("MYFILE.D",R)
SETPOSF FILE,CURPOSN

NOTE:
1. This function is not supported on the Commodore 64 because the Commodore
hardware and ROMS to not support it.

Copyright (C) 1986 SHA Inc. Rev. C

FDIC GETPOSF NOT AVAILABLE ON COMBO“ 6A RETURN PRESENT FILE POSITION

PROMAL LIBRARY Systems Management Associates, Inc. 4-23

4-24 Systems Egret-ant Associates, Inc. PROMAL LIBRARY

GET T DEVICE STATUS

USAGE: Bytevar = GETTST (IOflag)

Function GBTTST tests if the T device (serial port) is ready to send or
receive a character. IOFlag is 0 to test the input status and l to test the
output status. The function returns TRUE if the serial port is ready and FALSE
if not. When testing the input status, GETTST returns TRUE if a character has
been received. When testing the output status, the function returns TRUE if
the transmitter is empty (the last character, if any, has been sent).

Appendix F contains additional information on GETTST and related topics.

EXAMPLE 1:

INCLUDE PROSYS ;Where GETTST is defined

WORD COM ; File handle for serial port
BYTE CHAR ; Received character

COM = 0PEN("T", ’B’) ; Open serial port for input/output
IF COM=0
ABORT "#CUnable to open serial port"

TDEVRAW=$80 ;Enable "raw" serial input mode (see F)

REPEAT
IF GETTST(0) ;Character received from serial port?
CHAR=GETCF(COM) ;Get it
PUT CHAR ;Display it

UNTIL TESTKEY ;Do it until any key is pressed
CLOSE COM ;Close the serial port

NOTE:
1. You will need to have INCLUDE PROSYS near the start of your program in
order to use GETTST.

USAGE: Wordvar = GETVER

Function GETVER returns a WORD value indicating the version of PROMAL which
is running. There are no arguments. The low byte of the returned code is the
version number as two hex digits (for example, $21 for version 2.1). The high
order byte indicates the target machine for the PROMAL runtime package, as
follows: $01 = Commodore 64, $02 = Apple II, $03 = IBM PC small memory model,
$04 = IBM PC large code memory model. Additional codes may be defined as
PROMAL becomes available on other target machines.

EXAMPLE 1:

Copyright (C) 1986 SllA Inc. Rev. C

Appendix

-..——'-'—I- ll

._ , _,.., _ _
—-I-I-I-— fi'l'.-'.' '—_I-:—=_-_ '.'.I..';_'. -.'.-.-

- — -.—_—__==— .-
:--_.-- _:'.'-.-: ,-;_ _
:.=.-_—;'_-.'_-. ..-:I'- 1..
—_-.==::_:r._- '
==L==1===._

INCLUDE LIBRARY
INCLUDE PROSYS Where GETVER is defined

IF GETVER:> <> $02 Make sure we’re on an Apple
ABORT “#cThis program runs only on Apple 11"

NOTE:
1. You will need tO INCLUDE PROSYS near the start of your program in order to
use GETVER.

INPUT LINE OF TEXT FROM SCREEN

USAGE: Bytevar = INLINE(String [,Limit [,Mode]])

Function INLINE is the same as EDLINE, except that the String to be edited
in place is automatically set to null at the start of the routine. The String
argument should be the address of a buffer large enough to hold Linit+l
characters. Please see EDLINE for a full description.

FDNC INLIST SEARCH LINKED LIST

USAGE: Wordvar = INLIST (String, Listend [,Fold [,Limit [,Safety]]])

Function INLIST is a special purpose routine for advanced programmers. It
searches a linked list of a specific form for an entry matching a string. If
the string is not found, 0 is returned. Otherwise, the address of the matching
string is returned. String is the string desired. Listend is a pointer to the
end of the list, as shown below (i.e., the link to the first name to try is the
word at Listend-2. The optional argument Fold is a flag, defaulting to FALSE,
which if set to TRUE indicates that lower case alphabetic characters should be
considered as matching their uppercase equivalents. Limit is an optional
argument defaulting to 255, indicating the maximum number of characters
required to match in String. Safety is an optional argument defaulting to 8192
($2000) indicating the maximum number of entries to test before giving up.
Safety prevents the function from "hanging up" forever if the linked list is
corrupted. The assumed format of the linked list is as follows:

Copyright (c) 1986 SEA Inc. Rev. C

FDIC INLINE

PROMAL LIBRARY Systems Management Associates, Inc. 4-25

Address of last entry string (2 bytes)

String for last entry (N bytes)

Address of next-to-last entry string (2 bytes)

Address of first entry string (2 bytes)

First Entry string (M bytes)

$0000 (2 bytes, beginning-of-list sentinel)

EXAMPLE 1:
This example shows how to build a simple Symbol Table for a
compiler, assembler, etc. using a linked list, where each entry
is a variable-length name and its associated definition (value)...u. ...

INCLUDE PROSYS ; where INLIST is defined

WORD SYMTAB [1000] ;space for linked list
WORD LISTEND ;ptr to next unused entry

PROC PUTST ;NAME, VALUE
; Install NAME, VALUE into symbol table linked list.

ARG WORD NAME ; string to install
ARG WORD VALUE ; associated definition of name
WORD STPTR
BEGIN
MOVSTR NAME,LISTEND ; install name
STPTR=LENSTR(NAME)+LISTEND+1 ; after name string
M[STPTR]=VALUE:< ; install low byte of value
M[STPTR+1]=VALUE:) ; ...hi byte
M[STPTR+2]=LISTEND:<
M[STPTR+3]=LISTEND:>
LISTEND=STPTR+4 ; next available location
END

FUNC WORD GETST ; NAME
; Returns value stored in symbol table for NAME

ARG WORD NAME ; name to look up in symbol table
WORD ENTRY
BEGIN
ENTRY=INLIST(NAME,LISTEND) ; search list for name
RETURN (ENTRY+LENSTR(ENTRY)+1)@+ ; = value of NAME
END

; Initialize start of list for symbol table...
SYMTAB[O]=0 end of list sentinel
LISTEND=SYMTAB+2 starting address

Copyright (C) 1986 SMA Inc. Rev. C

.3.)

4-26 Systems Management Associates, Inc. PROMAL LIBRARY

NOTE:
1. A "real" symbol table manager would need to check for errors such as no
more room in the buffer, symbol not found, etc.
2. You will need to have INCLUDE PROSYS near the front of your program to use
INLIST.

TEST IF A CHARACTER IS IN A STRING 0R SET

USAGE: Bytevar = IRSBT(Char, String [,Meta])

Function INSET returns the position of a specified character in a string.
Char is the desired character, String is the string to search. Meta is an
optional argument character, which is usually ’~’ if specified. If Meta is
specified, then the Meta character can be used to denote a range of characters
Bytevar is returned as 0 if the character is not found in the string, or as the
index to the matching character plus one if the character is found in the
string.

EXAMPLE

INCLUDE LIBRARY

BYTE CHAR
BYTE I

BEGIN

CHAR=’A’

I = INSET(CHAR,

This returns I=l because the A matches first character of the string.
When Meta is not specified, INSET is often used to find a particular delimiter
in a string:

EXAMPLE 2:

WORD LINE

LINE="100, SPRING INVENTORY"

PUT LINE+INSET(’,’,LINE)

This will display:

SPRING INVENTORY

because the INSET function returns the number of characters to skip over to get
beyond the comma. A different use for function INSET is to test for membership
of a byte in a set of bytes:

Copyright (C) 1986 SMA Inc. Rev. C

"ABC")

PROMAL LIBRARY Systems Manag ‘ inn-a, Inc. 4-27

EXAMPLE 3:

BYTE LINE[SO]

IF INSET(LINE[I] "A-Za-zO-9.",’-’)

tests to see if the character LINE[I] is alphabetic, numeric, or a period. The
Meta argument is specified as ’—’, so "A-Z" will be matched by any character
between A and Z inclusive. If LINE[I] was any character between ’B’ and ’Y’
inclusive, INSET would return 2 (the position of the '-’ plus one).

CONVERT SIGNED INTEGER VALUE TO STRING

USAGE: INTSTR Value, #Var [,Radix [,Minfield [,Padding]]]

Procedure INTSTR takes a signed value and generates the ASCII string
representing the value. Value is the desired value to encode and #Var is the
address of the buffer to receive the ASCII characters. Radix is the optional
base to be used, defaulting to 10. Minfield is the minimum field width to
generate, defaulting to 0. Padding is an optional character (not string!)
argument which is the padding character desired to fill out the buffer to the
minimum field width, defaulting to blank.

EXAMPLE 1:

INCLUDE LIBRARY
BYTE BUF[8]
INT MYNUM

BEGIN

MYNUM=568-11
INTSTR MYNUM, BUF

PUT NL,BUF

This will display:

557

INTSTR $FFFE, BUF, 10, 4

will install the string -2" into BUF.

1. If a minimum field width is specified, the number will always be right-jus-
tified in the field. If more characters are required to output the number than
are specified for the minimum field width, they will be encoded without any
error indication.
2. To convert an unsigned (BYTE or WORD) variable, use procedure WORDSTR
instead. To convert a REAL value, use procedure REALSTR instead.

Copyright (C) 1986 SMA Inc. Rev. C

PROCIRTSTR

4-28 Systems Management Associates, Inc. PROMAL LIBRARY

ea,
——I l———- --
'u-l—f- -- I- 'u '— -_—_"=.'|=.|..—.|.l—;:_—"d:;=—_-.=.—555—;-T—"_i-'E
#345:a?
Er_.u—_-._--- -----I-

-_- "r -'--II-'-"I .-

I—— --I-I-

I-———-——I-—

CALL MACHINE LANGUAGE SUBROUTINE

USAGE: JSR [Address [,Areg [,Xreg [,Yreg [,Flags]]]]]

Procedure JSR calls a machine language subroutine at a specified address,
optionally loading the 6502 (or 6510 or 65C02) processor’s hardware registers
with specified values before the call. Address is the address of the desired
routine. Ares, Xreg, Yreg, and Flags are optional arguments which specify the
desired values to be installed in the A, X, Y, and flags (processor status
word) registers, respectively. All register arguments should be type BYTE.
Naturally the address must be type WORD. It is possible to sample the values
returned in the registers from the machine language program.

Please see Appendix I for a detailed explanation and examples of JSR.

NOTE:
1. You will need to INCLUDE PROSYS near the beginning of program in order
to use JSR.

RETURN LENGTH OF STRING

USAGE: Bytevar (String)

LENSTR is a function which returns a BYTE result indicating the length of
the String which is the argument.

EXAMPLE 1:

NOTE:
1. You may find frequent need of a statement similar to:

where LINE is an array of bytes holding some string. This can be more
economically written as:

BYTE
BYTE SIZE

BEGIN

MOVSTR "Hello", NAME

SIZE=LENSTR(NAME)

This sets SIZE=5. The size does not include the byte terminator.

Copyright (C) 1986 SMA Inc. Rev. C

IF LENSTR(LINE) > 0

$00

v"..- “ea-.. , nu..-

NAME[20]

your

PROMAL LIBRARY Systems Hating Associates, Inc. 4-29

IF LINE@<

which is equivalent, since if a string is non-null, the first character can’t
be the string terminator.

LOAD, UNLOAD, 0R EXECUTE PROGRAM OR OVERLAY

USAGE: LOAD Progname [,Bitflags]

The LOAD procedure loads, unloads, and executes programs and overlays on the
Apple II and Commodore 64. Prognale is the desired program or file name.
Bitflags is an optional BYTE argument consisting of several l-bit flags used to
control the action taken by the LOADer. Please see the Chapter 8 of the
PROMAL LANGUAGE MANUAL for details and examples.

NOTE:
1. You will need to INCLUDE PROSYS near the start of your program in order to
use LOAD.

SEARCH A LIST OF STRINGS

USAGE: Intvar = LOOKS'IR (String, Plist [,Nstr [,Fold [, Limit]]])

Function LOOKSTR searches an array of strings, trying to match a given
string. String is the desired string to try to match, Plist is the starting
address of a list of pointers to strings, terminated by a $0000 word. Hat: is
an optional argument specifying the maximum number of strings to search. Fold
is an optional argument, which if set TRUE, will cause lower case alphabetic
characters to be considered equal to their upper case equivalents. Limit is an
optional argument specifying the maximum number of characters to compare within
each string. Intvar is returned as -1 if the string did not match, or as the
array index to the string that did match.

EXAMPLE 1:

INCLUDE LIBRARY

INT I
BYTE COMD [20]
DATA WORD KEYWORDS []="MOVE","DRAW" "ERASE","DASH","REDRAW" "EXIT",0

BEGIN

MOVSTR "ERASE",COMD

I=LOOKSTR(COMD,KEYWORDS)

This will return I=2, because the string in COMD matches the third entry in the
list.

Copyright (C) 1986 SMA Inc. Rev. C

5-30 Systems Management Associates, Inc. PROMAL LIBRARY

PROMAL LIBRARY Systems Management Associates, Inc. 4-31

USAGE: Wordvar = MAX (Vall,Va12[,...]

Function MAX returns the largest of two or more arguments of type WORD
(unsigned). It is normally used to find the larger of two or more addresses.
Do not use it with type REAL arguments.

EXAMPLE 1:

LIBRARYINCLUDE

WORD I
WORD J
WORD K

BEGIN
J=1000
K=$DOOO

I=MAX(J,K,

This will return I=$D000.

1. Each value to be tested must be explicitly included in the function
call. You cannot find the largest value in an array by merely calling MAX with
the array name as an argument. The following example shows how a loop can
perform this function.

EXAMPLE 2:

WORD LARGEST
WORD MYARRAY[100]
WORD

BEGIN

LARGEST = 0 ; Dummy to initialize
FOR I = 0 TO 99 ; Find largest value in array

LARGEST MAX (MYARRAY[I] LARGEST)

Copyright (C) 1986 SEA Inc. Rev. C

$c000)

RETURN THE LARGEST OF TWO OR MORE VALUES

4-32 Systems Management Associates, Inc. PROMAL LIBRARY

USAGE: Wordvar = MIN (Va11,Va12[,

Function MIN returns the smallest of two or more arguments of type WORD
(unsigned). Do not use it with type REAL arguments.
find the lesser of two or more addresses.

EXAMPLE 1:

It is normally used to

INCLUDE LIBRARY

WORD
DATA WORD BOUND [100,200,300,400,5oo,eoo

BEGIN

I=MIN(I,BOUND[3])

I=351

This will return I=351, because 351 is smaller than

FUNC MLGET LOAD MACHINE LANGUAGE PROGRAM

USAGE: Wordvar = MLGET (Filename [,Loadaddress])

Function MLGET loads a machine language program. On Commodore 64 systems
it is expected to be in standard Commodore format for a machine language PRG
file. For Apple II systems it is expected to be a standard Apple BSAVE type
file. Filename is a string containing the desired file name. Loadaddress is
an optional load address. If not specified or 0, the load address will be the
address at which the program was saved. The function returns a word result
which will be $0000 if an error occurred, or the address of the last byte
loaded if successful.

You may load as many programs as needed by making multiple calls. No
checks are made to see if the loaded program conflicts with other memory usage,
and the memory allocation pointers (LOFREE, HIFREE, etc.) are not adjusted. It
is your responsibility to insure that an appropriate location is used.

Please see Appendix I for more information.

EXAMPLE 1:

Copyright (C) 1986 SMA Inc. Rev. C

400.

...])

RETURN THE SMALLEST OF TWO OR MORE VALUESFURCHIR

INCLUDE PROSYS
WORD ENDPROG ; Last address
DATA WORD MLPROGNAME "MLROUTINES" ; File name
BYTE DUMMY

REPEAT
ENDPROG MLGET(MLPROGNAME) ; Load Machine Lang. support routines

IF ENDPROG = 0
PUT NL,"Cant load file ",MLPROGNAME
PUT NL,"Please insert Master diskette and close drive door."
PUT NL,“Press any key when ready."
DUMMY = GETC

UNTIL ENDPROG <> 0

1. For Commodore file names for MLGET must match the desired name exactly,
including upper and lower case and character set selection.
2. For Apple II, remember that many Apple programs load at $2000 before
relocating themselves to their final destination. In this case you may need a
BUFFERS HIRES command before loading to help protect PROMAL from being
overwritten.
3. You will need to INCLUDE PROSYS near the beginning of your program in order
to user MLGET.
4. For Apple II, the default load address is found in the AUX_TYPE field of
the directory entry. See the ProDOS Technical Reference Manual for details.

COPY OR JOIN STRINGS OR EXTRACT SUBSTRING

USAGE: MOVSTR FromString, ToString [,Limit]

MOVSTR is a procedure which is used to copy strings, to concatenate
strings, or to extract substrings (i.e., replaces the LEFTS, MID$, and RIGHT$
functions found in BASIC). Fro-String is the address of the string to copy
ToString is the address of the destination. Limit is an optional argument
specifying the maximum number of characters to copy.

EXAMPLE 1:

INCLUDE LIBRARY

BYTE LINE[81]
BYTE SAVELINE[81]
BYTE KEYWORD[5]

BEGIN

MOVSTR LINE, SAVELINE

This copies the string LINE to the buffer SAVELINE.

EXAMPLE 2:

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-33

This accepts a series of keystrokes until a non-digit is entered, and sets
to the numeric decimal value entered.

MOVSTR today.", LINE+LENSTR(LINE)

This concatenates the string literal today. to the end of the string LINE.

EXAMPLE 3:

This extracts the first 4 characters of the string LINE and installs them in
the string KEYWORD. The Limit argument does not include the 0 byte string
terminator. The destination string may overlap the source string without
problems.

EXAMPLE 4:

MOVSTR LINE,LINE+1
LINE [0]=’A’

This inserts the character ’A’ at the beginning of the string LINE.

NOTE:
1. MOVSTR always installs a 0 byte terminator at the end of the copied string.
Therefore you should always allow room for it.
2. When specifying a particular element of an array for the source or
destination , be sure to include the # operator to indicate the address of the
element instead of the value (e.g., #BUF[I] is correct).

TEST IF A CHARACTER IS A DIGIT

USAGE: Bytevar = NUMERIC (Char)

Function NUMERIC returns TRUE the argument is an ASCII numeric digit and
FALSE otherwise. The argument is expected to be type BYTE a string!

EXAMPLE 1:

INCLUDE LIBRARY

BYTE CHAR
BEGIN

VAL=0
WHILE NUMERIC(GETC(#CHAR))

VAL=10*VAL+(CHAR-’O')

Copyright (C) 1986 SHA Inc. Rev. C

(not

FUNC NUMERIC

MOVSTR LINE, KEYWORD, 4

4-34 Systems Management Associates, Inc. PROMAL LIBRARY

mr-I
.II.-.I-.-I-I '

'__ _ _.__I.

_.—.—I—-—-—
-|_-l'-'I'—'I-l'I—-

PROMAL LIBRARY Systems Management Associates, Inc. 4-35

FDNC OHLINE AVAILABLE ONLY 0]! APPLE II GET VOLUME NAME OF DISK

USAGE: Bytevar = ONLINE (Slot, Drive, #Buf)
or
Bytevar ONLINE (0, Unit, #Buf)

Function ONLINE tests if an Apple disk drive (including /RAM disk) is ready,
and if so, installs the ProDOS volume name in a specified buffer. In the first
form, Slot is the Apple slot number (1 to 7), Drive is the drive number (1
or 2), and #Buf is the address of a buffer of at least 18 bytes which will
receive the volume name. The function returns TRUE if the drive is ready and
FALSE otherwise (in which case IOERROR holds a code indicating the reason as
described in the OPEN function, which will normally be 2 for illegal unit, 3
for not ready, or $28 for non-exisitent). If the first argument is 0, then the
second argument is interpreted as a ProDOS unit number (sometimes called a
device ID), which is a byte with the following format: Bit 7 is the drive
number bit (0=drive l, 1= drive 2); and bits 4—6 are the slot number (0-7);
bits 0—3 are 0. The volume name is returned in the specified buffer as a
PROMAL string. The name will have a leading and trailing ’/’, for example
"/USER.DISK/".

EXAMPLE 1:

INCLUDE LIBRARY
INCLUDE PROSYS

BYTE VOLNAM [18] ; Buffer for diskette volume name
WORD HANDLE

IF ONLINE(6,2,BUF) ; have second floppy disk?
FILE = OPEN ("2:SCRATCH.T",’W') ;Open file on drive 2

ELSE
FILE = OPEN ("1:SCRATCH.T",’W')

IF FILE=0
ABORT "#cCan’t open SCRATCH.T for writing"

NOTE:
1. The [RAM device is normally configured for slot 3 drive 2 and may be tested
in with ONLINE.
2. You will need to INCLUDE PROSYS near the front of your program to use
ONLINE.

Copyright (C) 1986 SEA Inc. Rev. C

11-36 Systems Management Associates, Inc. PROMAL LIBRARY

FUNC OPEN OPEN FILE 0R DEVICE

USAGE: Wordvariable = OPEN (Filename [,Mode [,Nocheck [,Type]]])

OPEN is a function (not a procedure!) which opens a specified file or
device for input or output. The first argument is a string which is the
desired file or device name. The second argument is optional and is a charac-
ter (not a string!) specifying the desired access Mode, chosen from the
following:

’R’ Read access
Write access

’A' Append (write, beginning at end of file) access
’3’ Both read and write (Not available on Commodore 64 except as noted

below for use with the command channel or T device).

The default access mode is ’R’. The remaining optional arguments Nocheck
and Type are normally omitted, and are used for opening special
system-dependent file types. These system-dependent options are discussed
below.

The function OPEN returns a non-zero file handle of type WORD if the open
was successful, and 0 if it was not. This file handle (also sometimes called a
file descriptor) should be saved in a WORD variable. After opening the file,
you can refer to the file for I/O operations by simply using this handle. The
handle is required as the first argument for other library routines which
operate on files.

If OPEN returns indicating that the file could not be opened, then the
pre-defined variable IOERROR indicates the reason, as follows:

IOERROR

No error. Normal.
1 Illegal access mode character.
2 Illegal file or device name.
3 Device not ready (or volume not found on Apple II).
4 File not found (for R mode access).
5 File already exists (for W mode access).
6 Can’t open another file (e.g., no more disk buffers)
7 Write protected (for A or W access).
8 or more Other (system dependent, see your computer manual)

should always test for an unsuccessful open.

EXAMPLE 1:

Copyright (C) 1986 SEA Inc. Rev. C

You

Meaning (If function OPEN returns 0)

INCLUDE LIBRARY

WORD INPUTFILE ;input handle
BYTE LINE[81] ;input line buffer
BEGIN
INPUTFILE=0PEN("MYDATA.D")
IF INPUTFILE=0

ABORT "Can’t open input file!"
WHILE GETLF (INPUTFILE,LINE)

EXAMPLE 2:

INPUTFILE=0PEN("MYDATA.D",‘R’)
IF INPUTFILE=O ; open error?

CHOOSE IOERROR
3
PUT NL,"Disk not ready."

PUT NL,"MYDATA.D file not found.
ELSE

OUTPUT "#CDisk error #I",IOERROR
ABORT "#CProgram aborted."

NOTE:
1. The Commodore 64 firmware limits the maximum number of open files to three,
of which only one may be open for writing or appending. If using relative
files (see Appendix H), at most one sequential file may be open, and DYNODISK
should be off. DYNODISK uses up one buffer inside the 1541 drive.
2. For the Apple II, the maximum number of open files is governed by the
number of available buffers (see the BUFFERS command in the PROMAL USER’S
GUIDE).
3. For the Apple and Commodore, the file handle points to a data structure
maintained by PROMAL. The first part of this data structure is the file name,
as a PROMAL string. Therefore, if you wish to display the name of a
successfully opened file, you can simply output the file handle, for example:

PUT NL,"Now reading file ", INPUTFILE

4. Devices such as the printer, modem, workspace, etc. are opened in the same
manner as files. For example:

EXAMPLE 3:

PRTR = OPEN ("P",’W’)
IF PRTR = 0
PUT NL,"Printer is not ready

ELSE
PUTF PRTR, NL,"This will be printed.",NL

Copyright (C) 1986 SHA Inc. Rev. C

The example above could be expanded for better error processing as follows:

file

PROMAL LIBRARY Syst-s Management Associates, Inc. 4-37

This opens the printer and outputs a line to it. Be sure to always send a
final NL to the printer; most printers do not actually print until they receive
a carriage return.
5. For special considerations for opening and using the T device (modem), see
Appendix F. The INTERFACING chapter of the PROMAL LANGUAGE MANUAL contains
additional information on opening files and devices, including the printer.

The optional argument Bocheck is a flag, which, if TRUE, allows files to be
opened which do not conform to the standard PROMAL naming conventions and file
types. When Nocheck is TRUE, you can open any file allowed by the underlying
operating system, and no default file extension will be added to the name.
This allows your PROMAL programs to read BASIC program files, machine language
files, word processor files, etc. If you specify Nocheck as TRUE, you may
also optionally specify the argument Type, which is an argument of type BYTE
specifying the type of file desired. This argument is system-dependent.

For the can be any of the following:

'P’ for PRG type files (BASIC and machine language files)
’5’ for SEQ type files (Sequential files)
’U’ for USR type files (User files).

The default type is ’S’. For example:

C64HANDLE 0PEN("BASIC PROG",'R’,TRUE,’P')

opens a file named "BASIC PROG" of type PRG for reading.

C64HANDLE = 0PEN("WordProcData",’W’,TRUE,’U’)

opens a file of type USR for writing.

You can also open to read a directory, open a direct access channel, or the
command/error channel. The Type argument should not be specified in this
case. For example:

C64DIR = 0PEN("1:$",'R’,TRUE)

opens the directory on drive 1. Do not attempt to open a directory for
writing. After opening a directory, the contents read will be the sector
contents of the directory (minus the track and sector links to the next
sector), starting with the BAM. Consult Anatomy of the 1541 Disk, Abacus
Software, for further information on the format of the directory. It is
recommended that GETBLKF be used to read the data.

EXAMPLE 4 (COMMODORE 64):

WORD C64DA ; Handle for DA file
BYTE CHAN ; 064 channel # for DA file

C64DA = 0PEN("#",’B’,TRUE)
CHAN = (C64DA+LENSTR(C64DA)+2)@<

Copyright (C) 1986 SEA Inc. Rev. C

Co-odore 64, it

Opening Special System-Dependent Files

4-38 Systems Management Associates, Inc. PROMAL LIBRARY

This opens a direct access file. CHAN is needed so that it can be embedded in
the commands to read and write blocks. GETBLKF and PUTBLKF are the best
commands to use to read and write the data. Note that the file is opened in
’3’ mode, so both reading and writing are permitted. Consult the Commodore 64
Programmer’s Reference Guide or the Abacus book for more information.

EXAMPLE 5 (COMMODORE 64):

EXT BYTE C64DYNO AT $0DE3 ; From PROSYS.S file
664CMD ; File handle for command/error channel

BYTE BUF[81] ; Holds reply from error channel
DATA WORD FMTCMD = "NO:TrashDisk,r8"

C64DYNO=O ;Disable DYNODISK
C64CMD = OPEN("Z", ’B’,TRUE)
PUTBLKF C64CMD, FMTCMD, LENSTR(FMTCMD)
IF GETLF(C64CMD,BUF)

PUT NL,BUF,NL

This opens the Commodore 64 command/error channel, immediately issues a
command to format the disk, and displays the error message from the error
channel. Internally, PROMAL will use channel 15 for drive 0: (device 8) and 14
for drive 1: (device 9). Error messages are best read using GETLF. Commands
must be sent using PUTBLKF (not PUTF or OUTPUTF). Before sending commands to
the disk command channel, you should disable DYNODISK, because the commands you
send may cause the disk to destroy the special DYNO code in the disk drive.
Internally, PROMAL always leaves the command/error channe1(s) open all the
time; closing and opening an error channel makes the appropriate "connection"
through the file handle.

PROMAL assigns Commodore channel 3 to the Printer and 2 to the T device
(serial port). The secondary address for the printer can be selected by
setting the variable C64PSA before the open (see Appendix G). Channel 1 is
reserved for the DIR function. Files are assigned channels of 4 and up, with
secondary addresses the same as the channel. Therefore if you wish to use a
channel for some special purpose in a machine language program, you should
choose a channel like 9 or 10 to avoid a possible conflict. Do not close
the Commodore command/error channel. Do not attempt any direct serial bus
activity from a machine language program with DYNODISK enabled.

Since DYNODISK uses one extra buffer inside the 1541/1571 drive, under some
circumstances you may be able to open fewer files with DYNODISK enabled. Under
no circumstances should a file be Opened with DYNODISK enabled while any other
device other than a single disk drive is connected to the serial bus. Failure
to observe this precaution will probably result in a "hung" system.

Copyright (C) 1986 SM Inc.

ray-”mac, any... in. ms... 14.n-u. Agubuuay r-Va-

WORD

PROMAL LIBRARY Systems Haggaent Associates, Inc. 4-39

FOT
SOS

BAS

$04
$08
soc
$F0
spc

For the Apple II, you do not have to specify the Type of file in Read mode;
any type of file can be opened when Nocheck is TRUE. For write mode, the file
type should be specified. The values for common ProDOS file types are:

BAD s01 PDA
TXT $05
BA3 $09
RPD $10
PRML SF8VAR 31m

$02 prx $03
$06 FNT $07
$0A WPF $03
$11 DIR $OF

(U8) INT $FA IVR $FE
VAR $FD REL $FE SYS $FF

For further information, consult the ProDOS Technical Manual. For
example,

AIIHANDLE 0PEN("BASPRG",'R’,TRUE)

opens the file BASPRG for reading. BASPRG could be a Basic program (or any
other type of file).

AIIHANDLE = OPEN ("LETTER",’W’,TRUE,

This Opens file LETTER Of type for write access.

For the Apple II, attempting to open a-locked file for 'W’ access will be
treated as a write-protect error. However, opening a locked file or write
protected disk for append mode cannot be detected as an error until an actual
attempt is made to write the file. Therefore you should always check DIOERR
after the first write operation in append mode. The file PRODOSCALLS.S
contains examples which show how to lock or unlock a file.

Copyright (C) l§86 SEA Inc. Rev. C

Reference

PCD
BIN
DA3
RPI

4-40 Systems Hanaganent Associates, Inc. PROMAL LIBRARY

——I- ———I— II-

,L. -'.__-.-_____'
I_-_ '51, c':' :.=
=_—:—..r;"._"l'_'1.I-_..‘

- q._-_.r:?___—;:.---—

-___ -a.__ 1.__I._
-.-__ ___-.- _ --._ ___ _-_-_ ___ _—. __._ ___..- ___—
.- - ___ -—

PROMAL LIBRARY Systems ManaL Associates, Inc. 4-41

FORMATTED OUTPUT T0 SCREEN

USAGE: OUTPUT Formatstring [, item...]

Procedure OUTPUT displays formatted output on the screen. Formatstring is
a string which governs how the output will be displayed, and how any optional
arguments which follow the format string will be interpreted. The special
character # is used as a field descriptor inside the format string. Field
descriptors indicate what kind of output is desired, chosen from the list
below:

Output signed decimal integer, right justified in a field n characters
wide, with leading blank fill. Display "-" after leading blanks if
negative (no "+" if plus). If n is omitted, use minimum field width
needed to display value.

#nW Output unsigned decimal word, right justified in a field n characters
wide, with leading blank fill. If n omitted, use minimum field width
needed to display value.

#nH Output unsigned hex word, right justified in a field n characters wide,
with leading 0 fill. If n is omitted, use minimum field width needed
to display value (no leading zeroes).

#nB Output n blanks (1 if n omitted).
#nS Output single character or string, left justified in a field of n

characters with trailing blank padding.
#nC Output one ASCII character whose value is n decimal. If n is omitted,

then output the newline character (ASCII CR, $OD). #0C is not allowed.
#nE Output scientific notation REAL using a field of n characters (n

defaults to 12 if omitted); n must be between 7 and 16.
#n.dR Output a REAL number using a field n characters wide, with d decimal

places shown; n must be between 3 and 12, and d must be less than
(n-l).

For each field descriptor in the string there must be a corresponding argument
following the string (except for #nB and #nC). The value n is optional, and
defaults to 0 except as noted above. The maximum value for n is 253. Up to a
total of 254 characters may be output by the entire procedure call. Hex Output
will show leading zeros; other numeric output will not. To output the charac-
ter "#" literally in the format string, use ##.

For #nI, #nW, #nH, and #nS field descriptors, if the value to be output
will not fit in the specified field width, extra characters will be output
sufficient to display the entire value. For instance, trying to display the
value 20000 using a #3W field descriptor will display all five digits, not just
3. However, if fewer digits are needed, blank "padding" will be output to make
up the difference. For #n.dR output, remember that you must specify a field
width wide enough for the sign and the ".", even if you know the answer will be
positive (a blank will be displayed). If you try to output a value using #n.dR
which is too large to be displayed, PROMAL will first try to display the number
using #nE format instead (with the same n as you specified). Failing that, it
will print asterisks instead of a value. It is usually a good idea to pick a
larger value for n than you really think you will need when using #n.dR format
output.

Copyright (c) 1986 SHA Inc. Rev.

‘fith-I‘LLJ In Lynn..- -_--..°, __..

INCLUDE LIBRARY

WORD N

BEGIN
N=723

OUTPUT "The answer is #W days.", N

This will output to the display:

The answer is 723 days.

EXAMPLE 2:

BYTE LINE[81]
LINENO=20
MOVSTR "BEGIN",LINE

OUTPUT "#C#4H#5B#S",LINENO,LINE
will display (after a carriage return):

0014 BEGIN

EXAMPLE 3:

INCLUDE LIBRARY

REAL X
DATA REAL PI 3.1415926535

X = P1 * 100000. / 3.
OUTPUT "PI=#10.4R, X=#13E", PI,X

will display:

PI= 3.1416, X= 1.047198E+06

NOTE:
1. The format string is always required, and the nulber of argulents

after the format string must agree with the number of field descriptors given
in the format string (excluding #nB and #nC). You may not simply OUTPUT
variable names without a format string to display their value!

2. You may output single characters (type BYTE) as well as strings (type
WORD) using the #nS field descriptor.

3. The output forms for REAL output will display with rounding based on
digits beyond the displayed field. However some decimal fractions such as .005
are not exactly representable in binary format (so, for example, .005 is really
.00499999999...). Therefore a value of exactly .005 may be displayed as
instead of .01 with a #n.2R field specification.

4. Some useful forms of the #nC field descriptor are:

Copyright (c) 1986 SMA Inc. Rev. C

.00

4-42 Systems Management Associates, Inc. PROMAL LIBRARY

#C or #13C Start a new line (carriage return)
#120 Clear the screen and home the cursor
#156 (Apple) or #18C (Commodore) Start reverse video
#14C (Apple) or #146C (Commodore) End reverse video

More information on formatted output is given in the INTERFACING chapter of
the PROMAL LANGUAGE MANUAL. The BUDGET.S demo program on the PROMAL disk
illustrates how to use formatted output for preparing tabular output data.

FORMATTED OUTPUT TO FILE 0R DEVICE

USAGE: OUTPUT? Handle, Formatstring [, item...]

Procedure OUTPUTF operates in the same manner as procedure OUTPUT above,
except that the first argument must be a file Handle of a previously opened
file or device, which is to receive the output.

EXAMPLE 1:

("P'u'ww

OUTPUTF PRTR,"#c#1013#1 days.#c“

INCLUDE LIBRARY

WORD I
BEGIN

I=100

PRTR =

This will output to the printer:

100 days.

carriage return will be written after the line, because or the field
specified at the end of the Formatstring. Note that it is important to
remember to send a final CR to the printer, because most printers accumulate
characters in a buffer until a carriage return is received. If no final CR is
received, the last line will never be printed.

EXAMPLE 2:

WORD OUTFILE ; Output file handle
REAL NETWORTH ; Total net worth in $

OUTFILE=OPEN(CARG[1], 'W’) ; Open specified output file
IF 0UTFILE=0
ABORT "#cUnable to open output file #S",CARG[1]

OUTPUTF OUTFILE, "#chur worth $#8.2R", NETWORTH

Copyright (C) 1986 SHA Inc. Rev. C

current net

OPEN

PROMAL LIBRARY Systems Management Associates, Inc. 4-43

INCLUDE PROSYS

PROQUIT ;

NOTE:
1. More information on output to files and devices is given in the INTERFACING
chapter of the PROMAL LANGUAGE MANUAL. More examples of output formatting are
given for PROC OUTPUT, above.
2. On the Apple II, you may test DIOERR if you wish after writing to a file.
DIOERR is set to 0 normally, 1 if the disk is full, and 3 for a disk write
error.

FROG PROQUIT EXIT FROM PROMAL SYSTEM

USAGE: PROQUIT

Procedure PROQUIT causes an immediate exit from the PROMAL environment. For
the Commodore-64, the computer is reset, re-starting BASIC. For the Apple II,
the ProDOS "Quit" call is executed as described in Apple’s ProDOS Technical
Note #7, which will result in a prompt for a new path name and complete prefix
for the next system program to be executed. PROMAL does not close any files
prior to exiting. However, for the Apple II, PROMAL will restore the /RAM disk
using the Apple-presecribed method it was disabled on startup.

EXAMPLE 1:

Permanently exit PROMAL

NOTE:
1. You will need to INCLUDE PROSYS near the beginning of your program in order
to use PROQUIT.
2. Once you exit PROMAL, it must be re-booted to resume. There is no “warm"
entry point.

OUTPUT CHARACTERS 0R STRINGS TO THE SCREEN

USAGE: PUT item [, item...]

PUT is a procedure for outputting text (including control characters) to
the display. PUT may have one or more arguments. Each argument may either be
a single character or the address of a string.

EXAMPLE:

PUT "Hello, world!",13

outputs the string "Hello world!" followed by carriage return (13 decimal).
No carriage return is automatically added before or after the PUT is executed;
it must be explicitly indicated. This allows lines of output to be generated
using as many separate PUTs as needed.

EXAMPLE 1:

Copyright (C) 1986 SHA Inc. Rev. C

4-44 SystemsWtAssociates, Inc. PROMAL LIBRARY

INCLUDE LIBRARY

WORD PHRASEl

PHRASE1= "Abe Lincoln
PUT cr," The answer was ",PHRASEI, or
PUT "Harold Robbins."

This will output the sentence:

The answer was Abe Lincoln or Harold Robbins.

on a new, single line.

1. PUT treats any argument between $00 and $FE inclusive as a single character
to be output, and all other values as a pointer to a string of characters to be
output. Strings must be terminated by a $00 byte.
2. You may not use PUT to display the value of numeric values. Use OUTPUT to
perform this function.
3. If you wish to output a string starting at a particular element of an array
of bytes, don’t forget the # operator (for example, PUT #PAGE[0,I]).
Otherwise, only a single character will be printed (for the reason given in
note 1 above).
4. PUT 12 will clear the screen. PUT $12, X, $92 will output X in reverse
video on the Commodore 64. PUT $0F, X, $0E will output X in reverse video on
the Apple II.
5. PUT N can be used to change text colors on the Commodore 64, where N is as
follows: $05=WHT, $1C=RED, $1E=GRN, $1F=BLU, $81=0RG, $90=BLK, $95=BRN,
$96=LTRED, $97=GRY1, $98=GRY2, $99=LTGRN, $9A=LTBLU, $9B=GRY3, $9C=PUR,
$9E=YEL, $9F=CYN.
6. More information about PUT is contained in the INTERFACING chapter of the
PROMAL LANGUAGE MANUAL.

WRITE MEMORY BLOCK TO FILE 0R DEVICE

USAGE: PUTBLKF Handle, #Start, Size

Procedure PUTBLKF does a block write to a file or device. Handle is the
file handle of the previously opened file. #Start is the address of the
first byte to be written. Size is the size of the block to be written, in
bytes. The output will be an exact match of the contents of the memory block;
no conversions take place, and no terminators or delimiters are added. PUTBLKF
and GETBLKF may be used to save and restore memory images, such as arrays or
buffers or complete screens.

EXAMPLE:

Copyright (C) 1986 SEA Inc. Rev. C

-....,_..

PROMAL LIBRARY Systems Management Associates, Inc. 4-45

INCLUDE LIBRARY

WORD OUTFILE
BYTE BUFFER[300]

BEGIN

OUTFILE=OPEN(CARG[1],‘W’) ;open file name given on command line
IF OUTFILE=0

ABORT "Can't open file!"
PUTBLKF OUTFILE,BUFFER,300 ;save buffer contents to file

writes the contents of the BUFFER array to the file specified as the first
argument on the command line.

EXAMPLE 2:

INCLUDE LIBRARY

CON REALSZ = 6 # bytes for each REAL variable
REAL ELASTICITY Elasticity matrix for stress analysis
WORD TEMPFILE Temporary file
WORD I Index to ELASTICITY matrix

TEMPFILE=OPEN ("TEMPEILE-MEM", 'w’)

PUTBLKF TEMPFILE, #ELASTICITY[I], REALSZ*(100-I) ; Save end of matrix

This saves an exact memory image of the REAL values ELASTICITY[I] through
ELASTICITY[99] inclusive to file TEMPFILE.MEM. conversion to ASCII takes
place (i.e., TEMPFILE.MEM is not a text file).

NOTE:
1. If you wish, you may test DIOERR after a PUTBLKF to check for disk errors.
DIOERR=0 normally; 1=disk full (works for device too); 3=disk write error.

Copyright (C) 1986 SEA Inc. Rev. C

.a.J.1 .1
[100]

4-46 Systems Management Associates, Inc. PROMAL LIBRARY

- I—I—I-II-u-u - - PI__ ' —I.——I.l-'l—Il-I._ _ _ _ _- _ ___—_____ _-._.l. - __1— _
Il-I-I-

E .
_.—

-"—'==—:=.-.—-——-_ _ I.—l___ ___ _ II.__ _.I.

L

-'- ""I"'I-' —-|

USAGE: PUTF Handle, item [,item...]

Procedure PUTF is similar to PUT except the first argument must be
Bundle for a previously opened file or device.

EXAMPLE:

This sets DIEROLL to a random number between 1 and inclusive.

RANDOMZ6+1

INCLUDE LIBRARY

WORD OUTFILE
DATA WORD FILENAME "1:MYFILE.D"
BYTE LINEOBUF[20]
BYTE LINE[81]

BEGIN

OUTFILE=0PEN(FILENAME,’W’) ;File name specified in DATA stmt.

PUTF OUTFILE,LINENOBUF,’ ’,LINE,NL

This outputs the string LINENOBUF, a blank, the string LINE, and a carriage
return to the output file MYFILE.D on drive 1.

NOTES:
1. See PUT above for more information about valid arguments.
2. More information on using PUTF to output to files or devices (including the
printer) is given in Chapter 6 of the PROMAL LANGUAGE MANUAL.

RETURN A RANDOM VALUE OF TYPE WORD

USAGE: Wordvar = RANDOM [(Seed)]

Function RANDOM returns a pseudo random number of type WORD, uniformly
distributed between 1 and 65535. If the optional non-zero argument Seed, of
type WORD is specified, it will be used as the seed to generate this and any
succeeding random numbers.

EXAMPLE 1:

INCLUDE LIBRARY
WORD DIEROLL

BEGIN

DIEROLL

Copyright (C) 1986 SMA Inc. Rev. C

FURCRANDOH

OUTPUT CHARACTERS OR STRINGS TO FILE 0R DEVICE

PROMAL LIBRARY Syst‘s Management Associates, Inc. 4-47

1. RANDOM uses a fast, feedback-shift-register method for generating random
numbers, suitable for games, etc. It does not generate random numbers of type
REAL.

USAGE: REALSTR Realval, #Buffer, Fieldwidth [,Decplaces]

Procedure REALSTR is used to convert a REAL numeric value to an ASCII
string representing its value. Realval is the desired value to convert.
#Buffer is the address of the string to receive the ASCII numeric representa-
tion. Fieldwidth is the desired number of characters to represent the number.
Decplaces is an optional argument specifying the desired number of decimal
places to be displayed. If Decplaces is omitted, the number will be converted
using scientific notation. Fieldwidth and Decplaces should be expressions of
type BYTE or WORD.

Fieldwidth must be specified between 3 and 12 if Decplaces is specified
(for normal output), or between 7 and 16 if Decplaces is not specified (for
scientific notation output). If Decplaces is specified, it must be less than
or equal to the field width minus two. This is because the field width must
always include room for a sign and the decimal point itself. If the sign of
the value to be printed is +, a blank will be output instead. If the sign of
the value is negative, a ’—’ will be output immediately to the left of the
leftmost digit (with any necessary blank padding).

If Decplaces is specified, but the value is too large to fit in the
specified format, REALSTR will first attempt to convert the number in scienti-
fic notation in the specified field width. If it is still too large, the
number will not be printed, and the field will be filled with asterisks

EXAMPLE 1:

INCLUDE LIBRARY
REAL COST
REAL OVERHEAD
REAL PROFIT
REAL GROSS
BYTE BUFFER[10]
BEGIN
GROSS=1299.95
cosr=557.44
OVERHEAD = .18*GROSS
PROFIT=GROSS-COST-OVERHEAD

REALSTR PROFIT,BUFFER,7,2

PUT NL,"0ur profit $",BUFFER

This will display:

Our profit 508.52

Copyright (C) 1986 SMA Inc. Rev. C

(*)

OI

4-48 Systems Management Associates, Inc. PROMAL LIBRARY

REAL XVAL

XVAL=-0.0000005543
REALSTR XVAL,BUFFER,12

This will install "-5.54300E—07" in BUFFER.

If the format of the output from REALSTR does not exactly meet your needs,
it is usually simple to write a procedure to manipulate the converted output
into the format you do want. For example, the following program fragment will
pad BUFFER with leading asterisks, such as might be used in a program to write
checks:

WORD PRINTER ;File handle
REAL AMOUNT
BYTE BUF[10]
WORD I

PRINTERFOPEN("P",W)

AMOUNT=887.50

REALSTR AMOUNT,BUF,9,2
I=0
WHILE BUF[I]=’ '

BUF[I]=’*’
I=I+l

PUTF PRINTER,’$',BUF

This would print:

$***887.50

USAGE: REDIRECT #STDIN [,Handle]_ or _
REDIRECT #STDOUT [,Handle]

Procedure REDIRECT is used by advanced programmers to redirect one of the
two standard I/O paths available in PROMAL: STDIN (standard input), or STDOUT
(standard output). Each of these paths is a global variable of type WORD,
defined in LIBRARY, and is initialized to point by default to the keyboard
device for input or the screen device for output. Handle is a file handle of a
previously opened file or device. The REDIRECT procedure sets the standard
path to point to the open file or device. If the Handle argument is not given,
the default redirection is made back to the keyboard or screen. If the handle
is specified, it must be open and must have the appropriate mode (direction)
for the specified STDxxx (e.g., you can’t redirect STDOUT to the keyboard). A

Copyright (C) 1986 SMA Inc. Rev. C

REDIRECT INPUT 0R OUTPUT

PROMAL LIBRARY Systems Management Associates, Inc. 4-49

violation of either of these requirements generates a runtime error. Only the
two global variables above can be redirected. The EXECUTIVE will automatically
redirect STDIN and STDOUT back to the default devices at program termination.

EXAMPLE 1:

INCLUDE PROSYS Where REDIRECT defined

WORD OUTFILE

OUTFILE=0PEN("SCREENFILE.T"
REDIRECT #STDOUT,OUTFILE
PUTF STDOUT,"This will go to SCREENFILE.T",cr

NOTE:
1. You will need to INCLUDE PROSYS near the beginning of your program to use
REDIRECT.
2. This function used by the EXECUTIVE to redirect input and output.

RENAME A FILE

USAGE: Bytevar = RENAME (Oldfile, Newfile)

Function RENAME is used to change the name of an existing file. Oldfile is
a string specifying the old file name, as described for OPEN. For the Commo-
dore 64, it may optionally include a drive prefix and file extension. For the
Apple II, it may optionally include a drive prefix and pathname. Rewfile is a
second string specifying the desired new name, which must be unique. If the
drive or prefix is specified for Newfile, it is ignored, and the drive number
or prefix for Oldfile will be used. It can change the file extension, however.
The function returns normally or an error code as described for OPEN.

EXAMPLE 1:

INCLUDE LIBRARY

BYTE RENAMERROR

BEGIN

RENAMERROR=RENAME("TEMP",CARG[1])
IF RENAMERROR

PUT NL,"Attempt to rename TEMP.C to ",CARG[1]," failed.

NOTE:
1. For the Commodore a default file extension will be applied unless
NOFNCHK (Defined in file PROSYS.S) bit 7 is 1 (set to $80). If NOFNCHK bit 7
is set, non—SEQ files or files with lower case letters can be renamed.
Normally, NOFNCHK is 0, which matches only upper case file names and applies a
default extension if none is specified.

Copyright (C) 1986 SMA Inc. Rev. C

FUNC RENAME

4-50 Systems Mafia-ant Associates, Inc. PROMAL LIBRARY

— '-.'.':."_ _-.__—_:===:=;=.T_- :1.-

-_'...' r:::.—_ fi:_-l-T-_-;
u——- .L ---;- r—_—_=_- r__ "'L _I _.- _-_

#S"

2. For the Apple, setting bit 7 of NOFNCHK will allow renaming file or
subdirectory with no file extension.

SET FILE POSITION

USAGE: SETPOSF Handle, Position [,Segment]

Procedure SETPOSF sets the relative position of the next byte to be read/-
written in a file. Handle is the file handle for a previously Opened file.
Position is a WORD value giving the desired file position. If the desired file
position is greater than 65535 (64K), then Segment should be specified as the
high order 8 bits of the complete 24 bit file position. The first byte of the
file is byte 0. If the position specified is greater than the current end-Of-
file, then the file will be positioned to end-of-file instead, without any
error indication. Therefore if you wish to use SETPOSF for implementing a
random-access file organization, you should initialize the file when it is
created by writing dummy records to the file until it has reached the desired
maximum size.

A common use of SETPOSF is to determine a file’s size. To do this, open the
desired file, then use SETPOSF to set the file to a position known to be larger
than end-of-file. Then use GETPOSF to read the true end of file position. An
example for function GETPOSF, above, illustrates a second common use of
SETPOSF.

EXAMPLE 1:

INCLUDE LIBRARY
CON RECSIZE=80
BYTE RECORD[RECSIZE+1] ; Current record contents

PROC GETRECORD ; File, RecNum
; Read record # RecNum from File into Record

ARG WORD FILE ; Open file handle
ARG WORD RECNUM ; Desired record
BEGIN
SETPOSF FILE,RECNUM*RECSIZE
IF GETBLKF(FILE,#RECORD,RECSIZE) < RECSIZE
PUT NL,"***Tried to read beyond end of file on file ,FILE
OUTPUT "#C***Record requested = #W",RECNUM
CLOSE FILE
ABORT "#CFile closed, program terminated."

END

The above example shows a routine to read a random record into memory from a
database file, given the record number and file handle, for a file of up to

bytes

Copyright (C) 1986 SEA Inc. Rev. C

64K

PROC SETPOSF NOT AVAILABLE ON COMMODORE 64

PROMAL LIBRARY Systems Management Associates, Inc. 4-51

4-52 Systems mnjgment Associates, Inc. PROMAL LIBRARY

FUNC SETPREPIX NOT AVAILABLE ON COHHODORE 64

USAGE: Bytevar = SETPREFIX(Dirname)

Function SETPREFIX attempts to set the current pathname to the specified
volume or directory name string, Dirnnne. If successful, it returns TRUE. If
the specified directory is not on line, FALSE is returned and the current path
remains unchanged. The string specified by Biron-e must end with a /. If a
leading / is not specified, the Dirname will be appende to the current prefix.

EXAMPLE 1:

INCLUDE LIBRARY

DATA WORD VOLNAME "/ACCOUNTS/"

IF SETPREFIX(VOLNAME)
RECEIVEABLES

ELSE
PUT NL,"Can't find ", VOLUME," disk"

USAGE: Bytevariable = STEREAL (String, #Variable)

STRREAL is a function which decodes (converts) a string into a numeric
value of type REAL. The first argument is the address of the desired string.
The second argument is the address of the REAL variable to receive the value
represented by the string. The string may have any number of leading blanks
and optionally a leading minus sign (-). The string may express the number in
normal notation or scientific notation (E-format). Conversion proceeds until a
character is encountered which cannot legally be part of the number (such as a
trailing blank, end-of-line, comma, etc). The function returns a result of
type BYTE which is an index to this delimiter. A returned value of 0 indicates
no legal digits were encountered, probably indicating an error condition.

EXAMPLE:
INCLUDE LIBRARY
BYTE LINE[81]
REAL VELOCITY
BYTE INDEX

BEGIN

GETL LINE
INDEX=STRREAL(LINE, #VELOCITY)
IF VELOCITY < 0.0

Copyright (C) 1986 SHA Inc. Rev. C

CONVERT NUMERIC STRING T0 REAL VALUE

;Desired volume name

HNAME

This would read a line from the keyboard and install the value of the number
typed into the variable VELOCITY. Some examples of acceptable input are shown
below:

0 3.14 9070 .077 7856.004 -200000 -5.56333308E-ll

CAUTION: Be sure to remember to specify the operator in front of the
REAL variable to receive the value.

A general purpose numeric input routine, INPUTR, is described in
of the PROMAL LANGUAGE MANUAL and is provided on disk file INPUTR.S.

CONVERT NUMERIC STRING TO WORD 0R INT VALUE

USAGE: Bytevar = STRVAL (String, #Variable [,Radix [,Maxfield]]

STRVAL is a function which decodes (converts) a string into a numeric
value. STRVAL may have two to four arguments. The required arguments are
String, the desired string, and #Variable, the address of a WORD or INT
variable (not BYTE or REAL!) to receive the value represented by the string.
Radix is an optional conversion base defaulting to base 10, and Haxfield is an
optional maximum field width defaulting to 255 characters. The value to be
converted may be signed or unsigned. The string may have any number of leading
blanks. Conversion proceeds until Maxfield characters are used from the string
or until a character is encountered which cannot legally be a digit in a number
in the specified or default base. A byte variable is returned as an index to
this delimiter.

EXAMPLE 1:

Assume that the following program segment inputs the line, 123,456" from the
keyboard (without the quotes):

INCLUDE LIBRARY

BYTE LINE[81]
WORD XDIST
WORD YDIST

BEGIN
GETL LINE
BINDEX = STRVAL (LINE,#XDIST)

This will install the value 123 decimal in XDIST and set BINDEX=4. If desired,
additional statements could determine that the delimiter was and so decode
any additional values (such as the 456):

EXAMPLE 2 (continued from Example 1 above)

IF LINE[BINDEX]=’,’
BINDEX=STRVAL (LINE+BINDEx+1, #YDIST)

Copyright (C) 1986 SKA Inc. Rev. C

Chapter 5

PROMAL LIBRARY Systems Management Associates, Inc. 4-53

EXAMPLE 3:

Assume BUF contained "BDF30 ". Then:

BINDEX=STRVAL(BUF,#Pc,16,3)

would set PC to $0BDF and return BINDEXF3, because a maximum field width of
three characters was specified. Base 16 decoding was specified. Any radix
between 2 and 36 can be used.

NOTES:
1. Be sure to remember to specify the # operator in front of the variable
name to receive the numeric value. If you forget it, the value will be
installed in memory at whatever address happens to be in that variable at
the time!
2. If you wish to input a number of type BYTE, first use STRVAL with a
destination of type WORD, and then copy the low byte to the final destination.
If you use STRVAL to decode directly to a BYTE variable, the following byte in
memory will also be affected.
3. If you wish to input a number of type REAL, use function STRREAL.
4. If the function returns 0 (no digits), the variable is also set to
5. If frequent numeric input is anticipated from the keyboard, you may wish
to use the following function (which can be found as file INPUTW.S on a PROMAL
disk), which displays a specified prompt and returns a WORD value typed from
the keyboard:

FUNC WORD INPUTW ; Prompt
; Output PROMPT, accept line of numeric input from keyboard,
; return the numeric value.

ARG WORD PROMPT ; Desired prompting message
WORD TEMP ; Temporary value
BYTE INDEX ; Number of digits input
OWN BYTE BUF[10] ; Buffer for keyboard input
BEGIN
REPEAT
PUT NL,PROMPT ; Display prompt
GETL BUF,10 ; Input line
INDEX=STRVAL(BUF,#TEMP) ; Convert to numeric value
IF INDEX=0 ; Invalid entry?
PUT NL,"Please enter a numeric value."

UNTIL INDEX) 0
RETURN TEMP
END

The following example illustrates the use of this function:

WORD ILINE
WORD MAXLINE

BEGIN
ILINE = INPUTW("What line do you wish to go to?
IF ILINE > MAXLINE

Copyright (C) 1986 SHA Inc. Rev. C

4-54 Systas Management Associates, Inc. PROMAL LIBRARY

5.375 5.-.;—
m:-

PROMAL LIBRARY Systems Management Associates, Inc. 4—55

LOCATE SUBSTRING IN STRING

USAGE: Bytevar = SUBSTR(Wantstring, Trystring [,Fold [,Max [,Limit]]])

Function SUBSTR searches 3 string Trystring for the presence of another
string, Wantstring. Fold is an optional argument defaulting to FALSE, which,
if TRUE, causes lower case letters to be treated as matching upper case
letters. Max is an optional argument specifying the last character position in
Trystring at which the match can start, defaulting to LENSTR(Trystring). For
instance, if Max is 1, then the match must occur starting with the first
character of Trystring. Limit is an optional argument specifying the number of
characters in Wantstring which must match, defaulting to LENSTR(Wantstring).
For example, if Linit=2, then SUBSTR will consider a match made if the first
two letters of Wantstring are found in Trystring. The function returns zero if
no match is found, or an index to the character plus one if it is found.

EXAMPLE 1:

INCLUDE LIBRARY

DATA WORD ASTRING "PROMISE ME PROMAL FOR MY BIRTHDAY“
DATA WORD WSTRING "PROMAL"
BYTE TRYl
BYTE TRY2
BYTE TRY3

TRY1=SUBSTR(WSTRING,ASTRING)
TRY2=SUBSTR(WSTRING,ASTRING,TRUE,20,4)
TRY3=SUBSTR(WSTRING,ASTRING,TRUE,10)

will set TRYl to 12, TRY2 to 1, and TRY3 to 0.

TEST IF A KEY IS PRESSED

USAGE: Bytevar = TESTKEY [(#Char)]

Function TESTKEY tests if a key is pressed on the keyboard. If not, it
returns 0. If a key is pressed, it is returned as the value of the function
and also is installed in the optional character address if specified. The
character is not echoed to the display. The key code returned will be ASCII as
given in Appenidx B. Testkey does not display or blink the cursor.

EXAMPLE 1:

INCLUDE LIBRARY

BEGIN

REPEAT
NOTHING

UNTIL TESTKEY

Copyright (C) 1986 SHA Inc. Rev. C

FDIC TESTER

FUNG SUBSTR

This waits for any key depression without echoing it to the screen.

NOTE:
1. CAUTION: be sure to remember to specify the operator in front of the
variable name to receive the key value.
2. The Commodore 64 "Kernal" ROM software does not support ongoing keydown
detection. Therefore calling TESTKEY in a loop will not return another non-O
result until the previous key is released on the Commodore. However, the space
bar will auto-repeat at about 10 "hits" per second.
3. For the Apple II, all keys auto-repeat after a brief pause.

CONVERT LOWER CASE CHARACTER T0 UPPER CASE

USAGE: Bytevar = TOUPPER (Char)

TOUPPER is a function which takes a single argument of type BYTE and
returns an argument of type BYTE. If the argument is a lower case letter the
returned value is the upper case equivalent; otherwise, the argument is
returned unchanged.

EXAMPLE 1:

INCLUDE LIBRARY

PUT NL,"Do you wish to accept your mission?
IF TOUPPER(GETC)=’Y’ ; accept ’y’ or ’Y‘
TAKEMISSION

EXAMPLE 2:

FUNC WORD UPPERSTRING ; String
; Convert all lowercase chars to uppercase in string.
; Return same string, updated in place.

ARG WORD STRING String to convert to uppercase
WORD I ; Address of character in string
BEGIN
I=STRING ; Addr of 1st char of string
WHILE I@< ; Not end of string
M[I]=TOUPPER(I@<) ; Convert if is lowercase
I=I+l ; Address of next char

RETURN STRING
END

NOTE:
1. The argument for TOUPPER must be a single character, not a string.

Copyright (C) 1986 SMA Inc. Rev. C

4-56 Systems Hanag Associates, Inc. PROHAL LIBRARY

PROMAL LIBRARY Systems Management Associates, Inc. 4-57

PROC WORDSTR

USAGE: WORDSTR Value, #Buf [,Radix [,Minfield [,Padding]]]

Procedure WORDSTR is the inverse function of STRVAL. It takes an unsigned
value and generates the ASCII string representing the value. Value is the
desired value to encode and #Buf is the address of the buffer to receive the
ASCII characters. Radix is the optional base to be used, defaulting to 10.
Minfield is the minimum field width to generate, defaulting to 0. If a minimum
field width is specified, the number will always be right-justified in the
field. If more characters are required to output the number than are specified
for the minimum field width, they will be encoded without any error
indication. Padding is an optional character (not string) argument which is
the padding character desired to fill out the buffer to the minimum field
width, defaulting to blank.

EXAMPLE 1:

INCLUDE LIBRARY
BYTE BUF[8]
BEGIN
ADDR=$FFFF-1

WORDSTR ADDR, BUF

This will install the string "65534" into BUF

EXAMPLE 2:

WORDSTR $BD, BUF, 16, ’0’

This will install

1. If you wish to convert a real number, use procedure REALSTR. To convert a
signed integer, use procedure INTSTR.

FUNC ZAPFILE DELETE FILE

USAGE: Bytevar = ZAPFILE (Filename [,Wildflag])

Function ZAPFILE deletes a file (or optionally, a group of files).
string argument specifying the file to be deleted. For the

Commodore 64, it can have an optional drive number prefix. For the Apple II,
it may have a pathname. The optional argument Wildflag is a byte value
defaulting to FALSE. If TRUE, the Filename argument can include the wildcard
characters ? and *. In this case, all files matching the pattern will be
deleted. Wildcards are not supported for the Apple II. The function returns 0
if successful and an error number as described for OPEN if not. However, an
attempt to delete a file which does not exist is not considered to be an error,
because this is the way the Commodore ROMS work. If you wish to flag an

Copyright (C) 1986 SHA Inc. Rev. C

Filename is a

"OOBD" into BUF.

CONVERT UNSIGNED VALUE TO STRING

attempt to delete a non-existent file as an error, you can do it by first doing
a DIR to determine if it exists and issuing an error message if it doesn’t.
For the Apple II, ZAPFILE can be used to delete a subdirectory, provided it has
no files left in it (see note 2 below).

EXAMPLE:

INCLUDE LIBRARY
BYTE ZAPERROR

BEGIN

ZAPERROR=ZAPFILE(CARG[1
CHOOSE ZAPERROR
0
PUT NL,CARG[1],"

2
PUT NL,CARG[1]," is not a legal file name.

7
PUT NL,"Not deleted, disk is write-protected.

ELSE
PUT NL,"Not deleted, error."

NOTES:
1. For Commodore 64, if you want to delete a file which is not type SEQ, does
not have a file extension, or has any lower case letters, you will have to set
the NOFNCHK flag to $80 (defined in file PROSYS.S).
2. For the Apple II, setting NOFNCHK=$80 will allow file names with no
extension or empty subdirectories to be deleted. NOFNCHK is defined in file
PROSYS.S

Copyright (C) 1986 SEA Inc. Rev. C

deleted.

4-58 Syst-s Management Associates, Inc. PROMAL LIBRARY

