PROMAL LANGUAGE

Systems Management Associates, Inc.

PREOMAL
(PROgrammer”s Micro Application Language)
LANGUAGE MANUAL
A PROMAL LANGUAGE DESCRIPTION AND REFERENCE

For Apple II and Commodore 64 Computers

SYSTEMS MANAGEMENT ASSOCIATES, INC.
3325 Executive Drive
Raleigh, North Carolina 27609
(919) 878-3600

Rev. C — Sep. 1986

Copyright (C) 1986 SMA Inc.

Rev.

C

3-2 Systems Management Associates, Inc. PROMAL LANGUAGE

PROMAL LANGUAGE MANUAL

CHAPTER l: INTRODUCTION

This manual will introduce you to the PROMAL programming language, which we
think will find to be the most enjoyable and creative language available
for your computer. This manual will guide you step by step through a descrip-
tion of the PROMAL language, with examples along the way. It assumes that you
already have a working knowledge of BASIC (or some other high-level language)
and elementary computer concepts such as bits, bytes and memory addresses.
Comparisons are often given between PROMAL programs and the equivalent BASIC
program, so that you may draw on your previous experience.

You should study the manual carefully, because PROMAL is significantly
different from BASIC. As a BASIC programmer, you may find some aspects of
PROMAL a little strange at first reading. But if you give it a fair trial,
we“re sure you will socom want to do all of your programming in PROMAL.

We assume that you have already read the companion manual MEET PROMAL!,
which provides a "hands—-on" introduction to the PROMAL system as a whole. You
will find the operational aspects of the PROMAL EXECUTIVE, EDITOR, COMPILER,
and LIBRARY described in detail in the PROMAL USER”S MANUAL. This manual
explains the heart of the PROMAL system, the PROMAL programming language, which
you can use to create your own programs. PROMAL is especially well suited for:

Text processing applications

Scientific and Engineering applicatiocns
Educational applications

Interactive programming

Small business programming

Compilers, assemblers, editors or system software

* % k * ¥ %

Not only do PROMAL programs for these applications often run 20 to 100 times
(or more) faster than BASIC, they are actually easier to program than BASIC!
Programe that used to take weeks or months of assembly-language drudgery can
now be quickly developed with PROMAL instead.

WHY USE PROMAL?

Why should you learn PROMAL when you already know BASIC? Why should you
learn PROMAL instead of one of the older, structured languages such as PASCAL
or C?

Perhaps the most important reason is that PROMAL is in many respects
the most structured language available, because the PROMAL compiller reads
indentation as part of the syntax of the language. As you will see, the fact
that indentation always shows the true structure of your program will make your
programs easler to write, and more importantly, easier to maintain.

Another important consideration is that PROMAL is the only compiled language
available from a single vendor for the IBM PC, Apple II, and Commodore 64 - the
three biggest—selling machines in history. If you plan to develop commercial
software, or just think you might change computers some day, this will be
important to you. And PROMAL gives you top performance on all machines.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-3

CHAPTER 2: PROMAL PROGRAMMING LANGUAGE OVERVIEW

A PROMAL source program is a file of text composed of lines, normally
created using the PROMAL EDITOR. Each line is called a statement. A program
has a certain organization to it, which is similar to a recipe. A program
starts by declaring its name, and then identifies what "ingredients" are used
in the program. Ingredients are identified by the kind of data to be used, the
name of the data, and the quantity required. The list of ingredients is called
the declarations part of the program. After the declarations part of the
program comes the actual instructions which tell how to manipulate the data.
For clarity, the instructions are usually broken up into a number of proce-
dures, each of which has a name suggestive of its function.

For example, consider the actual PROMAL program in the right column, below,
and observe the similarities with the recipe at the left.

A Kitchen Recipe A PROMAL Program

FRIED CHICKEN: {-- Your recipe name --> PROGRAM LONGESTLINE
INCLUDE LIBRARY

2 1b. Chicken pes. <-— Main ingredients -—> BYTE LINE [81] ;current line

1/4 1b. shorteniag and amounts needed BYTE LONGEST ;longest length
WORD IFILE sinput file

SEASONED FLOUR: {—— Sub Procedure Name --> PROC SIZELINE

1/2 cup flour {—— Ingredients for --> BYTE LENGTH ;cur line length

1 tsp. salt sub-procedure

1/4 tsp. paprika
BEGIN ; Procedure
Mix all ingredients <-— Instructions for --> LENGTH=LENSTR(LINE)

for seasoned flour. sub—procedure IF LENGTH > LONGEST
LONGEST = LENGTH
END
Heat oven to 450. {— Main Process ~-> BEGIN ; Main Program
Melt shortening. setup IFILE=QPEN({ "TESTFILE.T")
Coat chicken with LONGEST=0

seasoned flour.

Cook about 45 min. <-- Loop walting for —--» WHILE GETLF(IFILE,LINE)

until golden brown. a condition SIZELINE ;test if biggest
Serve with gravy. {-— How to serve up =--» OUTPUT "Longest = #I",LONGEST
the results END

The program above reads a file and prints the length of the longest line in
the file. It is useful to get the feel for what a complete (although very
simple) PROMAL program looks like before delving into the details.

Copyright (C) 1986 SMA Inc. Rev. C

3-4 Systems Management Associates, Inc. PROMAL LANGUAGE

If you have programmed in BASIC, probably the first thing you will notice
about the program above 1s that there are no line numbers. Line numbers are
not used and not needed in PROMAL programs. You will soon discover that this
makes PROMAL programs much easier to write and understand. PROMAL statements
normally start in columm 1. Let”s look briefly at the statements that compose
the program, just to get the general idea of what they do.

PROGRAM LONGESTLINE

This line starts the program. The name LONGESTLINE is the command you will
eventually type from the EXECUTIVE when you want to run this program.

INCLUDE LIBRARY

This line tells the PROMAL COMPILER to include the definitions of all the
built-in library routines (which are needed for input—output, etc.). You will
normally have this statement near the start of every program.

BYTE LINE [81] seurrent line

This line declares that you will be using a variable called LINE which is
an array of 81 BYTEs. One byte can store one character, so this array can hold
an 80 character line plus a line terminator. The ";" indicates the start of a

LU)

comment. The rest of a line after a ";" is ignored by the compiler.

BYTE LONGEST ;longest length

This line declares a simple (non-array) variable called LONGEST. It is
used to hold the number of characters in the longest line. In PROMAL, unlike
BASIC, all variables must be declared before they are used (not just arrays).

WORD IFILE sinput file

This line declares a variable of type WORD. Later you will learn that a
WORD is usually used to hold an address. 1In this case, the address will be a
"file handle" for the file of text to be read. You can think of a file handle
as just a number identifying a particular file.

PROC SIZELINE

This line begins the definition of a PROMAL procedure, which is similar to
a BASIC subroutine. It has been given the name SIZELINE by the programmer.

BYTE LENGTH seur line length

This is a variable of type BYTE which is only used within the procedure.
This will be explained further later on.

BEGIN

This line signals the beginning of actual executable instructions within
the procedure.

LENGTH=LENSTR{LINE)

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Managemeunt Assoclates, Inc. 3-5

This is an assigmment statement which uses the built in function LENSTR to
determine the number of characters currently in the array LINE, and install
that number into LENGTH.

IF LENGTH > LONGEST
LONGEST = LENGTH

The IF statement tests if the current length is larger than the largest
line length so far, and if so, updates the value of LONGEST to LENGTH. Other-
wise, the second statement is simply skipped over.

END

The END statement indicates the end of the procedure (like a BASIC RETURN
statement).

BEGIN

Since there are no more PROCEDURES, the BEGIN signals the beginning of the
main program. 1In PROMAL, the wain program always comes last. This may seem a
little strange at first, but follows from the general rule that everything,
including all subroutines, must be defined before being used.

IFILE=OPEN({ "TESTFILE.T")

This is actually the first statement which would be executed in the
program. 1t tells the computer to "OPEN" the file called "TESTFILE.T" for
reading, and instzalls the file handle into IFILE. Any subsequent input
references to IFILE will read from "TESTFILE.T".

LONGEST=0

This statement works just like its BASIC equivalent, and initializes the
value of LONGEST to O.

WHILE GETLF(IFILE, LINE)
SIZELINE stest 1f biggest

These two statements comprise a loop. The WHILE statement attempts to read
one line from the file into the LINE array. If successful, the SIZELINE
subroutine is called, and the WHILE statement is repeated again. This process
is repeated until end-of-file 1is reached, in which case the GETLF function is
unsuccessful, and control passes through without executing SIZELINE again. In
PROMAL, subroutines are called by merely typing their names; no GOSUB is
needed.

QUTPUT "Longest = #I", LONGEST

This statement 1s similar to a BASIC PRINT statement. It would show an
answer on the screen, for instance:

Longest = 67

Copyright (C) 1986 SMA Inc. Rev. C

3-6 Systems Management Associates, Inc. PROMAL LANGUAGE

asguming the longest line was 67 characters. The "#I" in the OUTPUT statement
is a code which tells the computer how to format the answer; in this case,
telling it to print it as an integer number.

END
This line terminates the program.
It is not important to understand the details of the program at this point,

but just to get the general idea of what a program looks like. The following
sections will explain the rules for writing a program in detail.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-7

CHAPTER 3: ELEMENTS OF THE PROMAL LANGUAGE

In the last chapter we got a quick "top down" view of how a simple complete
PROMAL program looks. In this chapter, we will take a "bottom up" look at some
of the elements of the PROMAL language in greater detail. Then we will learn
how to combine these elements into statements and programs.

VOCABULARY

The following reserved words have special meaning in PROMAL programs, and
form the basic vocabulary of the language:

AND CON EXT INT OWN TO
ARG CHOOSE FALSE LIST FROC TRUE
ASM DATA FOR NEXT PROGRAM UNTIL
AT END FUNC NOT REAL WHILE
BYTE ELSE IF NOTHING REFUGE WORD
BEGIN ESCAPE IMPORT OR REPEAT X0R
BREAK EXPORT INCLUDE OVERLAY RETURN

The reserved words may be spelled with either upper or lower case letters, or a
mix of both. Therefore BEGIN, begin, Begin, and Begln are equivalent. These
reserved words are also sometimes called keywords. In PROMAL (unlike BASIC)
you must separate keywords from each other or from other names with blanks or
other punctuation. This helps make programs readable and does not impose any
speed or memory size penalty on the program. As a practical matter you may
also wish to consider the standard library routine names listed at the start of
the LIBRARY MANUAL as reserved words, although this is not strictly true
because you do not have to use the LIBRARY. You may even change the names in
the LIBRARY, although this is definitely not recommended (for reasons of
conslstency with other programmers).

RAMES

Names are used to identlfy constants, variables, data, functioms, proce-
dures and programs in PROMAL. You may choose names (also called identifiers)
as you wish, following these rules:

1. A name may be from one to 31 characters In length.

2. The first character must be alphabetic.

3. The remaining characters must be alphabetic, numeric, or the underline
character " " (left—pointing arrow on the Commodore 64, which has no
underline key).

4. Either upper or lower case alphabetic characters may be used. Both are
considered equivalent. The PROMAL compiler treats all alphabetic
characters as upper case in identifiers. Therefore XYZ and xYz are
considered the same name.

5. A name may not duplicate one of the reserved words in the basic vocab-
ulary above.

Unlike Commodore or Apple BASIC, which only looks at the first two
characters of a name, all characters of a name are "significant"™ in PROMAL.
For example, EXTRAPOLATEX]1 and EXTRAPOLATEY1 will be considered as two
different variables, even though the first eleven characters are identical.

Copyright (C) 1986 SMA Inc. Rev. C

3-8 Systems Management Associates, Inc. PROMAL LANGUAGE

Similarly, TON is a legal name, even though it contains the reserved word TO
(which would make it 1llegal in BASIC). After complilation, programs using long
names do not use any more memory or execute any slower than programs with short
names, s0 you should select names which are meaningful. For example,

AMOUNT DUE is probably a better choice for a name than AD.

Some examples of legal names are:

A ZERO OldInventory X Y Data
aBe for4 s D2C0
Ch d2000 DearJohn ET

Some examples of ILLEGAL names (for the reasons indicated) are:

B~-4 (second character is not alphanumeric or)
3D (first character is not alphabetic)
LIST (duplicates a reserved word)

Again, remember that you cammnot run variable names and PROMAL keywords
together the way you can in BASIC. For example,

IFID=MEORID=YOU

may be an acceptable way to start an IF statement in BASIC, but in PROMAL you
would have to write:

IF ID=ME OR ID=YQU
instead.
DATA TYPES

A data type refers to the kind of data that a program can manipulate.
PROMAL has four built-in data types, three of which are very simple and quite
close to the data types that are used in machine language. This primitive
simplicity greatly contributes to PROMAL”s speed of execution. The four types
are:

Type Meaning
BYTE An unsigned integer number between 0 and 255, or

a single ASCII character, or
the Boolean value TRUE or FALSE.

WORD An unsigned integer number between 0 and 65,535.
INT A signed integer number between -32,767 and +32,767.
REAL A floating point number between approximately 1.E-37 and

1.E+37. Similar to BASIC s standard numeric data type.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-9

The data type BYTE is a distinguishing characteristic of the PROMAL lang-
uage. This is very lmportant, because byte variables can be manipulated very
rapidly and are frequently needed for the types of applications PROMAL is
intended for. As the name implies, a BYTE variable occuples only one byte of
memory. WORD and INT (integer) variables each occupy two bytes (16 bits). In
memory, the low order 8 bits are stored in the first byte and the high order 8
bits are stored in the next higher address. This i1s the conventional way to
store addresses for the 6502 family processor used in the Apple II and Commo-
dore 64. BYTEs, WORDs, and INTegers may not have any fractlonal part; thus 1l
and 12 are okay but 11.5 is not.

REAL variables occupy 6 bytes of memory each. They are similar to the
numeric data type used in BASIC (5 bytes each), but are accurate to 11 signifi-
cant digits instead of 9 significant digits like BASIC. REAL variables have
the greatest flexibility because they can store very large and very small
numbers, including a decimal fraction. However, they are manipulated much more
slowly than the other data types (but not as slowly as in BASIC), and therefore
should be used with discretion. PROMAL also provides facilitles for formatted
output, so that you can precisely control the number of digits and number of
decimal places printed for REAL output.

BASIC programmers may note the absence of character strings as a standard
data type. But PROMAL can handle strings very well as an array of type BYIE.
String handling is not difficult and will be discussed in detail later.

LITERAL NUMBERS, CHARACTERS, AND STRINGS

Numbers may be written in the usual way. A number written without a
decimal point 1s assumed to be of type BYTE, INT, or WORD, depending on its
size and sign. Unsigned values less than 256 are assumed to be BYTE. Larger
values are type WORD. Any negative number 1s assumed to be INT.

Examples of legal BYTE, INT or WORD type numbers are:

0 1 137 22340 65535 -78

The following are illegal as BYTE, INT or WORD type numbers (for the reasons
indicated):

1,333 ; {Cannot have a comma)
120.6 ; (Cannot have a decimal point - OK for REAL numbers)
65539 ; {Out of range — must be less than 65536)

Literal numbers may also be specified in hexadecimal, by using a "$§"
prefix. Hexadecimal (base 16) numbers are often more convenient for specifying
memory addresses or bit patterns. For example, it is easier to remember that
the Commodore 64 VIC-2 video chip is at address $DO00 than at its decimal
equivalent, 53248. 1If you are not famlliar with hexadecimal numbers, you may
wish to consult your computer”s reference manual. FExamples of legal hex
numbers are:

50 $a $2BD SFFFF 50012

Copyright (C) 1986 SMA Inc. Rev. C

3-10 Systems Management Associates, Inc. PROMAL LANGUAGE

The following are ILLEGAL hex numbers (for -the reasons indicated):

51B3.4 ; (Cannot have decimal point in hex number)
FFFF 5 (No $ prefix)
5102B0 ; (Out of range — must be less than $10000).

REAL numbers must be specified with a decimal point- In BASIC, you can
write a real number without a decimal point, but mot in PROMAL. If you forget
to write the decimal point, PROMAL may accept the number as a valid byte,
integer, or word value, without an error indication. However, if you pass this
value to a function or procedure that is expecting a REAL value (such as OUTPUT
using a #R format), the procedure or function will try to interpret your result
as REAL, resulting in a garbage value. Therefore you should always be careful
to specify a decimal point for a real comstant. You may also write REAL
literal numbers using the "E" format sclentific notation, as in BASIC.

Examples of legal REAL numbers are:

0. .0 123. 3.1415926535 -.0000007 56.00
1l.2ell -.003E-10

The following are 1llegal real numbers (for the reasons indicated):

76000 ; (no decimal point - will be treated as out-of-range integer)
2,333.00 ; (cannot have z comma)
1.21E450 ; (value out of range; must be less than 1E+37)

In specifying literal numbers, you should keep in mind the size limits for
the various data types. Only REAL numbers may be larger than 65535 decimal
($FFFF) and may have a fractional part.

PROMAL programs often need to specify single ASCII characters for some
operation (Appendix A contains a summary of the ASCII character set). To
specify a single literal character, enclose it in single quotes, for example:

’al ’Q’ ’4’ ~d s - -

The PROMAL compiler will substitute the numeric ASCII value of the character.
For example, writing “A” is equivalent to 65 or $41 (see table, Appendix A). If
you need to show the single quote character itself (”) as a literal character,
you must double it (7777).

A literal string is a group of characters enclosed in double quotes.
Examples of literal strings are:

"A" "Hello There! [l “26" n+_*/" wn

When the compiler encounters a literal string in your source program, it
generates the ASCII representation of the string, followed by a $00 byte
terminator, in your object program. Literal strings use one byte per charac-
ter, plus a string terminator which is always a $00 byte. Therefore the string
"A" occupies two bytes of memory and the string "Hello There!" occupies 13
bytes in your compiled program. The last example ("") above is called the null
string, and contains no characters. This is not the same as a string contain-
ing a blank. A blank is a character and occupies space in memory. The O-byte
terminator is always generated automatically by the compiler. A literal string

Copyright (C) 1986 SMA Inc. Rev., C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-11

may contain O or more characters. As we will see later, character strings may
be up to 254 bytes long, but as a practical matter, a literal character string
is limited to the number of characters which will fit on a single line.

The most common use of a literal string is to output a message, which is
just as easy as a BASIC PRINT statement:

PUT "Hello world!"

PUT is actually a bullt in procedure which should be followed by the address of
a string which 1s to be printed. So for example when the PROMAL compiler sees:

PUT "Hello world!”

it actually generates a string for you in memory (terminated by a 0 byte), and
generates a call to the PUT procedure, passing PUT the address of the string to
print. The compiler uses the address of the first character of the string as
the “value™ of the string. If you don"t understand this completely yet, don"t
worry about it. The importance and usefulness of this will be explained more
fully later.

If you need to include the double—quote character itself (") in a literal
string, it should be doubled. For example:

PUT "She said, ""I"11l be back."""
will actually cause the program to print:
She said, "I1°11 be back."”

You can also embed unprintable codes (such as ASCII control characters or
special characters, such as characters to trigger color changes on the Commo-
dore 64) in a string by writing the character \ (£ pounds sterling key on the
Commodore 64, which has no backslash key) followed by exactly two hex digits
giving the desired character code. For example:

PUT "New line \ODstarting here"

will embed a $0D (ASCII carrlage return) in mid-string. If you wish to include
the \ itself in a string, you should double it, in the same manner as the
quote. A particularly useful pair of embedded codes on the C-64 are \12 and
\92, which start and stop reverse video output, respectively. On the Apple II,
\OF and \OE will enable and disable reverse video.

It is important to remember the difference between a character and a
string. A literal character is always a single character enclosed in single
quotes. A literal strimg is zero or more characters enclosed in double quotes.
This means that “A” and "A" do not have the same meaning to the PROMAL compil-
er. “A” occupies a single byte and has the value 65. "A" occupies two bytes,
65 followed by 0, and has the "value™ of whatever address the PROMAL compiler
assigns to the first character.

Copyright {C) 1986 SMA Inc. Rev. C

3-12 Systems Management Associates, Inc. PROMAL LANGUAGE

Note that you may use PUT only to print characters and strings on the
screen. If you need to print the value of a variable, you will need to use
OUTPUT instead, which is described later.

VARTABLES

PROMAL variables are used to hold wvalues, in much the same way as BASIC
variables. However, as we have already seen, PROMAL variables may have long
names. PROMAL variables also have a "type" associated with them, which must be
BYTE, INT (integer), WORD, or REAL. BASIC variables also have a type, but the
type is implied by the name of the variable itself. For example, a % suffix in
BASIC indicates an integer type variable and a $ suffix indlcates a string type
variable. When using PROMAL, however, you must declare the type and name of
every varlable explicitly instead. No speclal suffixes are used.

DECLARING VARIABLES

In PROMAL programs, all variables must be declared before they are used. A
variable declaration tells the PROMAL compiler the name of the variable, what
type of variable it is, and how much space it will need. A sample variable
declaration might be:

INT SCORE ; Game score

This declares that you will be using a variable with the name SCORE, and that
it will be of type INT. Therefore the variable SCORE will be able to take on
signed values between -32767 and +32767. Omly one variable may be declared on
a line. It is considered good programming practice to put a comment after the
variable name explaining what it is used for, as is shown above.

In BASIC, you did not have to declare variables (except for the DIM state-
ment, which is a declaration for arrays). Having to list all your variables at
the top of the program may seem like a nuisance at first, but you will come to
appreclate the value of it. When you pick up a PROMAL program, you can quickly
find out the names of all the variables in the program and what they are used
for by reading the declarations. If you want to add a new variable, you won't
have to search the whole program to make sure the name you choose has not
already been used for something else; you just look at the declarations. If
you forget to declare a variable before you use it, the PROMAL compiler will
flag the variable name with an error message saying "UNDEFINED" when you try to
use it.

There is an even more iwmportant reason why variables need to be declared.
This 1s best illustrated with an example from BASIC. Suppose you decide to
modify an existing BASIC program which uses a variable called X0. You add a
few lines to the program, using the wvariable X0, but the program mysteriously
doesn”t work. Eventually you discover that the reason is that you typed X0
{X~-"letter 0") but the original variable was X0 (X-"zero”). In this case,
BASIC automatically creates a new variable, initialized with a value of zero,
instead of using the existing variable X0 which you really wanted. 1In PROMAL,
you would not have this problem because the compiler would flag X0 as UNDE-
FINED. As a matter of historical interest, one of the NASA space program’s
planetary probes was lost due to a navigational error caused by precisely this
kind of bug in a FORTRAN program (like BASIC, you don”t have to declare
variables in FORTRAN).

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Assoclates, Inmc. 3-13

As you learn the PROMAL language, you will find other instances like this
where PROMAL imposes a certaln structure on your programming to help improve
the clarity and style of the program.

Unlike BASIC variables, which are automatically initialized to 0, PROMAL
does not provide any initialization of variables. This means that you cannot
assume anything about the value of a variable until you have assigned some
wvalue to it. The initial value of a variable is simply whatever happened to be
“left over" in the memory location PROMAL assigns to the variable. Chapter 7
describes a convenlient method for initializing all variables to zero with a
single statement.

CONSTANT DEFINITION

A constant is a name given to a numeric value which will not change
throughout the program. A constant must be defined with a CON statement before
it can be used. For example:

CON LF=10 ; ASCIT linefeed character

defines the symbol LF to be 10. After this, anytime the PROMAL compiller
encounters the name LF, it will substitute the value 10 instead. There are two
differences between constants and variables. First, the value of the constant
is permanent and is assoclated with the constant name at compile time. Second,
no memory is set aside to save the value of the constant in the data area.
Instead, any time the constant is referenced, the compiler generates the value
of the constant (in the same manner as a literal constant) in the executable
code of the program. Only one constant can be defined on a line. Again, it is
considered good practice to add a comment to a constant definition explaining
what the constant is. If you are an assembly language programmer, you may
recognize that a PROMAL constant is equivalent to an assembly language
"aquate”. You may also define the type of the constant explicitly, for
example:

CON WORD STARTLOC=8$40

defines STARTLOC to be of type WORD with a value of 40 hexadecimal. If you
don"t specify the type explicitly, PROMAL will assume type BYTE if the value 1s
less than $100, INT if it has a minus sign, and type WORD otherwise. Later we
will learn more about constant definitions, after we learn about operators

and expressions.

You may mot declare a REAL constant. Instead, you should use a DATA
statement if you wish to associlate a name with a permanent value of type REAL.
Disallowing REAL constants saves memory and reduces the complexity of the
compiller.

Copyright (C) 1986 SMA Inc. Rev. C

3-14 Systems Management Associates, Inc. PROMAL, LANGUAGE

ARRAY VARIABLES

PROMAL allows arrays of any of the four data types, with up to eight
subscripts. Subscripts for the array are enclosed in square brackets "[]",
not in parentheses like BASIC. This makes it easy to tell the difference
between an array element and a function call (where parentheses are used to
enclose the arguments, as will be discussed later). Like all other variables,
arrays must be declared before they can be used. An array variable declaration
is similar to a simple variable declaration, but is followed by the number of
elements of the array desired. For example:

BYTE BUFFER [81]

declares an array of type BYTE which can hold 81 elements (BUFFER[0] through
BUFFER[80]). It is important to observe that if you define an array as X[N],
then the last element is X[N-1], not X[N], because X[0] is the first element.

It is considered good programming practice to define a constant which
controls the size of a subsequently declared array. This will usually make it
easler to alter the program later. For example:

CON BUFSIZE = 100
BYTE BUFFERL [BUFSIZE]
BYTE BUFFER2 [BUFSIZE]

You may not use a variable as the dimension for an array, however. This is
because the PROMAL compiler allocates memory for the array at compile time; the
size of the array must be known at compile time, not when the program is
actually run.

The subscripts for an array of any type must always be of type WORD. If an
array subscript evaluates to type BYTE, it will be "promoted” to WORD automa-
tically. A subscript which evaluates to type REAL will cause the compiler to
generate an error message. The maximum subscript which can be used is
dependent on the amount of free memory. When you refer to am array name
without subscripts (or backets), the address of the array will be used. The
importance of this will be illustrated later.

It is possible to define both simple variables and arrays at specified
locations in memory. For example you can define the screen memory as an array
starting at $0400 (1024). This is kind of declaration is called an external
variable, described in Chapter 6, "Interfacing”.

CAUTION: When array elements are referenced, PROMAL does not perform any
bounds checking (because of the adverse affect on performance). Therefore a
sequence like:

WORD I
BYTE BUF[10]
BYTE LINE[8]
I=12

BUF [1]=0

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Assoclates, Inc. 3-15

will not produce an error message and will move the ¢ into part of the LINE
array instead of the BUF array as was intended. You should always take care to
insure that array indices stay in bounds, or strange and invariably unpleasant
results will occur!

Multiple dimenslon arrays have the subscripts separated by commas. For
example:

BYTE SCREENIMAGE [80,25]
REAL STIFFNESS [10,20,3]
IF SCREENIMAGE [0,I] = ~ -~
SCREENIMAGE [0,1] = SCREENIMAGE [1,I]
BEND = TORQUE * STIFFNESS[I,J,K]

The amcunt of memory required to store an array is the product of its
declared dimensions times the size of each element. The SCREENIMAGE array
above uses 2000 bytes, and the STIFFNESS array uses 3,600 bytes. Multiple
dimension arrays are mapped into memory such that incrementing the first
subscript will address elements that are physically adjacent in memory. Or,
another way to visualize this is to say that SCREENIMAGE is organized as 25
groups of 80 bytes each (mot 80 groups of 25 bytes each). Therefore if you
wish to have a two dimensional array of text, the column subscript should come
first and the row subscript second, as was done for SCREENIMAGE above. This is
discussed further in Chapter 7.

DATA DEFIRITION

A data definition is similar to a variable but has a predefined initial
value which is determined at compile time. TFor example:

DATA REAL PI = 3.1415926535
defines a data item of type REAL which will be predefined to the value of PI.

Unlike constants, data definitions can define arrays as well as simple
variables. The DATA definition is most frequently used to define a table of
values which will not be changed by the program. The DATA definition looks
similar to a variable declaration, except that it starts with the word DATA and
is followed by an "=" and the desired value (or values). TFor example:

DATA BYTE MYTABLE [] = 23, 12, 8, 4, 2, 1, O

This line defines an array called MYTABLE of type BYTE having 7 elements.
Notice that the size of the array is not given in the brackets; the PROMAL
compiler counts the number of elements for you. You must explicitly define the
value of a2ll elements. The first element of the array will be MYTABLE[QO] and
will be initialized to 23. The last element will be MYTABLE[6] and have the
value 0.

You may mot define multiple~dimension DATA arrays. Only a single dimension
is permitted for DATA declarations.

Copyright (C) 1986 SMA Inc. Rev. C

3-16 Systems Management Associates, Inc. PROMAL LANGUAGE

You may not change the value to a data item with an assignment statement.
If a data name appears on the left side of an assignment statement, the
compiler will generate a "Variable Expected” error. It is possible to force
the data items to be altered with an assignment statement to a varlable array
which overlaps the data items, but this is considered poor programming practice
(and will also cause your program to be reloaded from disk if you try to
re—execute it, because data items are included in the checksum which the
EXECUTIVE uses to determine if a program has been corrupted).

If you wish to use a table of data items to set the initial values of a
variable array which will subsequently be altered, the correct procedure is to
copy the data array to another variable array (using the BLKMOV procedure,
described later), and then alter the variable array.

The data definition 1s the one statement in PROMAL which can consist of
multiple lines. In order to continue the data definition on additiomal lines,
either the = sign or a comma should be the last character of the preceding
line. For example:

DATA WORD LIST [] =
0,45,13,27,
0,46,13,28,
1,46,14,28,
1,47,14,29

defines an array of 16 words.

DATA statements are frequently used to define an array of strings which can
be used for messages, etc. during the program. For example:

DATA WORD ERRORMSG [] =
"Function Successful.”,
"Illegal widgit.", H
"Widgit not found.", H
"You must specify a Widgit Number first.” ;

e

WMo PO

This statement defines a table of four words, each initialized to point to a
string. Later in your program, if you wanted to print the "Widgit not found."
error message, you could simply write:

PUT ERRORMSG[2]

PUT is a bullt-in LIBRARY procedure which displays the string specified, in
this case the third string in the table.

Please note that the type of the above data array is WORD, not BYTE. This
is because each element of the array is a string. You may recall from our
discussion of strings that the "value" of a string is the address of its first
character; therefore a WORD is necessary to hold this address.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-17

OPERATORS

An operator 1s a special symbol which indicates an action to be performed.
PROMAL provides the following operators:

Op. Description Example Result
+ Addition 3+5 8

- Subtraction or negation 48 - 11 37

* Multiplication -10.32 * ,034 -.35088
/ Division (fraction discarded except REAL) 200 / 30 6

A Remainder (mod) 200 % 30 20

< Left shift 7K1 14

>> Right shift $A0 >> 4 $0A

< Relational operator less than 4 <9 TRUE

<= Relational operator less than or equal 6 <=6 TRUE

<> Relational operator not equal “ATOTA” FALSE

= Relational operator equal “A"=65 TRUE

>= Relational operator greater than or equal 10 >= “a~ FALSE

> Relational operator greater than 3>8 FALSE
AND Logical AND operator 3>1 AND 4<10 TRUE

OR Logical OR operator 2<{=1 OR 8>9 FALSE
XOR Logical exclusive OR $00 XOR SFF $FF

NOT Logical complement NOT TRUE FALSE

Address of variable #X addr of X
:{ Extract low byte of WORD or INT $§1234:< $34

:> Extract high byte of WORD or INT $1234:> $12

1+ Convert to WORD $5A:+ $005A
= Convert to INT SFF:— +255

I Convert to REAL 45:, 45.0

@< 1Indirect through pointer to BYTE PTREL see text
@- Indirect through polnter to INT PTR @- see text
@+ Indirect through pointer to WORD (PTR+2) &+ see text
@. Indirect through pointer to REAL PTR @. see text

Some of these operators may look familiar from your experience with BASIC;
others are entirely new. These operators may be combined with operands, which
may be numbers, characters, strings, constants, variables, data, or functions,
to produce expressions. We shall now examine the most important of these
operators in detail.

ARITHMETIC EXPRESSIONS

Like BASIC, arithmetic expressions are evaluated from left to right (in the
absence of parentheses), with multiplication and division having a higher
priority than addition and subtraction. Therefore the expression:

3+ 4 %S

evaluates as 23, not 35. A summary of operator precedence is given below.

Copyright (C) 1986 SMA Inc. Rev. C

3-18 Systems Management Associates, Inc. PROMAL LANGUAGE

OPERATOR PRECEDENCE

{operators In the same row have equal precendece)

i<, >, i+, -, 1., @G @+, @-, @., # Highest precedence
NOT

2/, %, KL

- (negative)

+, -

{, &=, <>, =, >=, >

AND OR XOR Lowest precedence

The arithmetic operators, +, -, *, and /, work in the expected fashion,
but with a few twists. First of all, remember that PROMAL deals with integers
(whole numbers) as well as real numbers. The result of arlthmetic on type
BYTE, WORD or INT cannot have a fractlonal result. Therefore 5 / 2 evaluates
as 2, not 2.5 (any fraction 1s always discarded). However, 5. / 2. evaluates
as 2.5, because the presence of the decimal point tells the PROMAL compiler
that the numbers are REAL.

Note for Commodore 64: Be careful not to type the shifted “+" character on
the keyboard when you want a plus sign. It looks like a plus sign, but isn’t
(the same applies to BASIC).

Most operators take two operands. For most operators, these two operands
do not have to be of the same type. In a mixed expression involving operands
of different types, the operands are usually “"promoted” to the "higher" type
automatically, where BYTE is the "lowest”™ and REAL is the "highest” type. The
table below summarizes the results of a partially evaluated expression of the
type shown in the left column when an operator is encountered with a new
operand of the type shown in the top row:

RESULT TYPE FOR MIXED MODE EXPRESSIONS

Next operand involved is...

Present
Type is.-.. BYTE WORD INT REAL
BYTE BYTE WORD INT REAL A
WORD WORD WORD INT REAL €—
——Result type
INT INT INT INT REAL €
REAL - REAL REAL REAL REAL (—J

The TYPE of the data being operated on must be considered. For example,
adding two variables of type BYTE will always result in a value which is also
of type BYTE, even if the result 1s toc large to fit in a BYTE variable. For
example, if X is a wvariable of type BYTE which has been previously assigned the
value of 254, then the expression X+4 will NOT have a value of 258, but 2. This
is because BYTE variables can only take on values between 0 and 255, so that
when you add 4 to 254, the result is (258-256) = 2,

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-19

If you don"t quite understand this, think of PROMAL BYTE, INT and WORD
variables as being like the odometer on your car. Most odometers go up to
99,999.9. If your odometer reads 99,998.0 and you drive 4 more miles, the
cdometer will read 00,002.0, not 102,000.0. A PROMAL variable of type BYTE
only goes up to 255 ($FF hex), and then "wraps around” again starting at 0. A
numeric expression which overflows the maximum value representable simply
"wraps around” like this with no indication of an error. Similarly, if you
subtract a larger BYTE operand from a smaller BYTE operand, the result is
"wrapped around” but still positive. For example, 3 - 4 evaluates to 255
{(think of what happens if you turned back the odometer 4 miles when it had a
reading of 3).

Since by definition a BYTE type variable is unsigned, you cannot apply the
negation operator to it directly, so the byte is automatically promoted to type
INT (integer) before the negation is performed. This "promotion” iz only done
in the temporary work area called the accumulator where PROMAL does its
arithmetic; it does not change the type or size of the original variable.

An operand of type WORD also is always positive, but in this case the
largest possible "odometer reading” is 65535 (FFFF hex). For example if Y is a
variable of type WORD with a value of 1, then Y-3 1s 65534 ($FFFE), not -2.

Only integers and reals may take on negative values. To understand how
integers work, again consider your auto odometer. If you started out at 0 and
turned the odometer back 1 mile it would read 99,999.0. Turn it back another
mile and it would read 99,9998.0. 1If you wanted to use your odometer to
measure both forward and backward movement from 0, you might define everything
from 0 to 49,999.9 as positive, and everything from 50,000.0 and above as
negative, effectively splitting the total number of representable numbers in
two (half positive and half negative). This is exactly how INT variables work
in PROMAL.

In two bytes there are 65,536 possible numbers, which we divide in two,
with O to 32767 being considered positive (%0000 to $7FFF). The other half of
the numbers represent negative numbers, with -1 represented by $FFFF. The most
negative number possible is -32768, or $8000. However, since there 1s no
+32768 number representable, the number —-32768 is disallowed. This number
scheme 18 called "two”s complement” arithmetic, and is standard on almost all
computers.

For example, consider the following fragment of a PROMAL program:

BYITE X
WORD Y
WORD ANSWER
254

= 300
ANSWER = X + Y

X
¥

This will produce the expected result of ANSWER=554. However, if you
change the last line to read:

ANSWER = X + 3 + ¥

Copyright (C) 1986 SMA Inc. Rev. C

3-20 Systems Management Associates, Inc. PROMAL LANGUAGE

then the result will be ANSWER=301, because X and 3 are both type BYTE, so X +
3 evaluates to 1; this is then promoted to a word and added to Y to give 301.
If the order of the operands was changed to:

ANSWER = X +Y + 3

then the result would be 557, because X + Y would be evaluated first, with X
being promoted to WORD before making the addition.

Most of the time you will not have to worry about mixing different types in
an expression, but when you do you should bear in mind the order of evaluation.
You can "force" an operand to be promoted (or "demoted") from one type to
another with the "type cast" operators, which are:

Extract low order byte from word or integer (or convert real to byte).
Extract high order byte from word or integer.

Convert to word (unsigned).

Convert to Integer (signed)

. Convert to real (floating point).

I+ VA

These operators are written immediately after the operand which they are to
change. For exanmple:

ANSWER = X:+ + 3 + ¥

would result in ANSWER=557, because the :+ operator will promote or "cast" X to
a word before performing the addition with Y. The expression X:+ is read as "X
cast to a word".

There are four special cases for arlthmetic operators.

1. The % operator (remainder) cannot be applied to REAL operands. The sign
of the result is always considered positive for the % operator.

2. If you multiply or divide two operands of type BYTE, both operands will
be promoted to WORD, and the result will be type WORD.

3. Taking the negative of a BYTE or WORD converts to an INT. No error
is given 1f the result is out of range (result truncated to 16& bits).

4. Dividing by zero will produce a fatal run—-time error. A "zero divide"
error can be triggered by any of the following:

a. Division by 0 (X / 0).

b. Remainder by O (X % 0).

c. A REAL result larger than the largest representable value (about
1.E+37).

d. Conversion of a REAL to a BYTE, WORD, or INT which cannot be
represented (e.g., 100000. :+).

Copyright (C) 1986 SMA Imc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-21

RELATIONAL OPERATORS

The relational operators (<, <=, <>, =, >=, >) are the same as theilr
BASIC counterparts, and return a value of TRUE or FALSE. In PROMAL, TRUE is
represented by a byte of value 1 and FALSE by a byte of value 0. For purposes
of comparison in a conditional statement such as an IF statement (which we will
study later), any non-zero value is considered TRUE. The result of a compari-
son using a relational operator is always type BYTE. Promotion of operands in
a comparigen is the same as for the arithmetic operators, but the result is
always type BYTE.

The fact that the result of a relational operation can be interpreted as 0
or 1 as well as FALSE or TRUE can be useful. For example, the two statements:

IF PHASORS > 100
SCORE = SCORE + 1

can be replaced by the single equivalent statement:
SCORE = SCORE + (PHASORS > 100)

because the expression (PHASORS > 100) will evaluate as 1 if TRUE and 0 other-
wise.

The relational operators all have equal priority of evaluation and are of
lower priority than any arithmetic operators, so that "normal"” comparisons will
produce the expected result when written without parentheses. For example the
expression:

3*3>3+3
evaluates as TRUE (1).

Please note that you may mot compare two strings by simply using the
relational operators on the variables involved, because this would merely
compare the addresses of the strings, which has no relation to the conteant of
the strings. To compare strings, use the CMPSTIR function, described in the
LIBRARY MANUAL.

LOGICAL OPERATORS

The logical operators (AND, OR, NOT, XOR) may be combined with relational
operators or used for bit-by-bit Boolean operations. These operators may only
be used on operands of type BYTE, which is normal if using them in conjunction
with relational operators. All logical operators have an equal priority of
evaluation which is lower than the arithmetic and relational operators, so that
"normal” combinations of operators will produce the expected result without
parentheses. For example the expression:

X> 100 AND Y =0
1s equivalent to:

(X > 100) AND (Y = 0)

Copyright (C) 1986 SMA Inc. Rev. C

3-22 Systems Management Associates, Inc. PROMAL LANGUAGE

and will evaluate TRUE if X 1is greater than 100 and Y is 0.

AND, OR and XOR are useful in performing bit-by-bit Boolean operations and
masking operations (on type BYTE operands only). For example:

PORT AND $0F

will "mask off” the high order 4 bits of PORT. As you may have already discov—
ered, these masking operations are frequently needed to manipulate selected
bits within a byte.

The operator NOT is a unary operator which converts any non-zero byte to O,
and 0 to 1. To perform a bit-by-bit complement, use XOR $FF ilastead.

SHIFT OPERATORS

The operators << and >> perform left and right shifts, respectively. The
operand to be shifted appears on the left side of the operator, and the shift
count on the right, for example:

XVAL << 4

shifts the value of XVAL left by four bits. Shifts may be applied to all data
types except REAL; however, the shift count must be of type BYTE. The shift
count should be in the range of 0-8 for BYTE operands and 0-16 for WORD or INT
operands. Shift operators have the same precedence of evaluation as multipli-
cation and division. One of the most frequent uses of shifts is to perform
multiplications or divisions by powers of 2. For example:

COUNT << 3
will compute eight times the value of COUNT much faster than:
COUNT * 8

Right shifting by N is equivalent to (and much faster than) dividing by 2 to
the Nth power. Shifts are also sometimes used in conjunction with the logical
operators for manipulating data into specific bits of a register. Bits shifted
out of a byte or word are lost; O bits are always shifted into the word (even
if it is a negative integer). The result of a shift on type INT is type WORD.
There 18 no built-in operator to perform bit rotations.

INDIRECT AND ADDRESS OPERATORS

The operator # is the address operator. It can only be applied to a
variable or data name (not to a number, string, constant or function). The #
operator returns the address of the varlable which follows it. For example:

WORD PTR
REAL STRENGTH

PTR = #STRENGTH

Copyright (C) 1986 SMA Inc. Rev. C

FROMAL LANGUAGE Systems Management Associates, Inc. 3-23

sets the variable PTR to the address of the variable STRENGTH in memory. The #
operator can also be used to find the address of a particular element in an
array, for example:

WORD PTR
DATA BYTE COMDCHAR [] = “D”,”X",”P~,”A","E","Q"

PTR = #COMDCHAR[2]
will set PTR to the address of the character “P~.

The operators @<, @-, @+ and @. are indirect operators. They are used
to access data "pointed to” by some variable or expression. The expression to
the left of the indirect operator should be of type WORD. If it is of type
BYTE, it will be promoted to type WORD automatically. For example!:

WORD POINTER
REAL VALUE[10]
POINTER = #VALUE[7]

IF POINTER@. > 0.5

Here POINTER is set to the address of a certain element of an array 6f REALs.
Later, the expression POINTER@. can be used to test the value of that element.

The expression "POINTERE." can be thought of as "the real number pointed to by
POINTER."

One of the most common uses of the indirect operators is to extract charac-
ters from strings. TFor example, consider the following program fragment:

BYTE BUFFER [80]
WORD PTR
BYTE CHAR

PTR= BUFFER

CHAR = PTR @<

This sequence will set CHAR to the first character of the array BUFFER.
Although this could also have been done with the more straightforward state-
ment:

CHAR = BUFFER[0]

the use of PIR allows more versatility, since PTR could point to amy array, not
just the BUFFER array. Pointers and indirect operators are very useful in

passing arrays and strings to subroutines to be operated on, as you will see in
Chapters 5 and 7.

Note that you may nmot use the indirect operators to identify the destination
variable for an assignment statement. Therefore

Copyright (C) 1986 SMA Inc. Rev. C

3-24 Systems Management Associates, Inc. PROMAL LANGUAGE

PTR@C = 10 ; ILLEGAL!

is not legal. You may use the predefined array M, which is defined in the
Library as an array of bytes encompassing all of memory, to solve this
problem. The above example could be correctly written as:

M[PIR] = 10 ; Right!

The use of pointers and the array M is discussed further in the section on
subroutines and in Chapter 5 and 7.

GLOBAL VARIABLES

Variables are normally declared first in your program, before the executable
statements. These variables are called global varlables, because they can be
accessed from anywhere in your program. Later another kind of variable will be
introduced called a loecal variable. Local variables are defined imside
subroutines, and are known only inside that subroutine. Global variables are
defined before any subroutines (or between subroutines), and are known
everywhere thereafter in the entire program, (including inside all
subroutines). This distinction will be clarified in Chapter 5, where
subroutines are discussed.

Now that you know how to declare variables and form expressions, you are
ready to learn how to bring these pieces together with the reserved words to
form statements, and then combine these statements into a complete working
program.

Copyright {(C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Imc. 3-25

CHAPTER 4: STATEMENTS

INTRODUCTION

In this chapter you will learn about PROMAL language statements. If you
have only programmed in BASIC and not in another "high-level” language you
should study this chapter very carefully. If you have programmed in Pascal or
"C" this chapter will be important for understanding the differeunces as well as
the similarities of PROMAL and other "structured” languages.

Some PROMAL statements are similar to statements in BASIC. For example,
XV = YV + 17

is an assignment statement, which is very similar to a BASIC LET gstatement.
However, there are some important differences between BASIC statements and
PROMAL statements, including:

1, Statements do not have line numbers.

2. Only ome statement is permitted on a line.

3. A statement may not occupy more than one line (with the exception of
the DATA statement).

4. Keywords and variables must be separated from each other by blanks or
other punctuation marks as required by the statement.

SYNTAX DIAGRAMS

In many ways, PROMAL allows you a great deal more flexibility in construct-
ing statements than BASIC. In order to help you determine exactly what makes
up a legal statement, a set of syntax diagrams is included in Appendix P. These
syntax dlagrams tell you graphically how to construct a legal PROMAL statement.
Syntax diagrams are not difficult to use, once you are familiar with them. If
in the following descriptions you are unsure about a PROMAL statement”s correct
syntax, vou may refer to the diagrams in Appendix P, and the accompanying
discussion of how to read then.

PROGRAM STATEMENT
Every PROMAL program must start with a PROGRAM statement of the form:

PROGRAM Name [OWN [EXPORT]]
~or-
OVERLAY Name [EXPORT]

where Hame is a legal PROMAL identifier not used for any other purpose. The
PROGRAM line declares the command name by which you will execute the program
when it is loaded into memory. You should always make the PROGRAM name the
same as the file name you COMPILE. The OWN keyword iIs optiomal, and is
normally not used. If specified, it will cause the compiled program to be
loaded into memory with the global variables allocated immediately after the
program, rather than being shared with other programs in high memory. This and
the EXPORT and OVERLAY keywords are discussed further in Chapter 8 and in the
optional Developer”s Guide.

Copyright (C) 1986 SMA Inc. Rev. C

3-26 Systems Management Associates, Inc. PROMAL LANGUAGE

ASSIGNMENT STATEMENT

The assignment statement is the simplest and most fundamental statement in
PROMAL (or in any other language). You are familiar with it in BASIC. Its form
is:

variable = expression

where expression can be a constant, a variable, a function, or a combination of
these in an arithmetic or relational expression. See the Syntax Diagrams in
Appendix P for all the possibilities. The assignment statement assigns the
contents of (or results of) the expression on the right side of the "=" sign to
the variable on the left side.

The varlable on the left cannot be a DATA item. Here are some sample
assignment statements:

X=0
ENDPAGE = TRUE

SMALLX =MIN(XL,X2,6X3)
VAL{I]=3.14159%RADIUS[I]*RADIUS[I]
YBIGGER = Y > X AND Y > Z

CONDITIONAL STATEMENTS

A conditional statement is a sgtatement which alters the order of execution
of statements based on evaluating a condition. In BASIC, the conditional
statements are IF, FOR...NEXT, ON...GOTO, and ON...GOSUB. PROMAL has condi-
tional statements which are more powerful and easier to read and understand
than the related BASIC statements. The PROMAL conditional statements are the
IF, WHILE, REPEAT, FOR, and CHOOSE statements.

IF STATEMENT

By far the most common conditional statement is the IF statement. It can
take several forms. The simplest form is:

IF expression
statement 1 TRUE
statement 2
e FALSE
statement n v

In this form, the expression is tested, and if it is TRUE, then all the
indented statements following it are executed. If it is FALSE, then control
passes directly to statement n, on the same level of indentation as the IF.

For example:

IF X > 10
OLDX = X
X=10

Z=X

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Assoclates, Inc. 3-27

In this case, the conditional expression tests if X is greater than 10. If so,
then OLDX is set to X and X is set to 10. If not, the two statements after the
IF statement are skipped. 1In either event, the line Z = X 1s always executed.

BASIC programmers, please note that you camnot put THEN, GOTO, or anything
else on the same line as the IF, after the condition! You must put the state-—
ments to be executed on the lines after the IF, and they must be indented. The
indentation must be exactly two columns to the right of the IF. The proper
indentation is easily obtained by using the TAB key (or CTRL I) in the PROMAL
EDITOR.

If you have ever taken any courses In programming, you probably were told
that indentation is a good way to show a program”s structure. PROMAL simply
enforces this concept. The indentation does show the structure of the program.
This is probably the most important feature of the PROMAL language. By using
indentation as a syntactical element of the language, PROMAL is able to do away
with a host of confusing statement delimiters and begin-end brackets which
pervade other structured languages.If you don”t indent, you"ll get an error
message when you compile your program.

A second form of the IF statement has an ELSE clause:

IF expression

statement 1 TRUE !'ALS!

ELSE
statement 2

statement n g

)
In this form, the indented statements after the IF are executed if the express-
i1on is TRUE, and the statements after the ELSE are executed otherwise. This
form is used to select one of two mutually exclusive paths. For example:

IF X > 100
POINTS = 3
ELSE
POINTS = 1
SCORE = SCORE + POINTS

If X i8 greater than 100, POINTS is set to 3 and control passes to the last
line. If X is not greater than 100, POINTS is set to 1 and control passes to
the last line.

The final form of the IF statement has one or more ELSE IF clauses before
the final ELSE, for example:

IF CHAR = "D~
DRAW

ELSE 1F CHAR
ERASE

ELSE IF CHAR
EXIT

ELSE
QUTPUT "ILLEGAL COMMAND."

It
A
[
v

It
\
L
)

Copyright (C) 1986 SMA Inc. Rev. C

3-28 Systems Management Asgociates, Inc. PROMAL LANGUAGE

This form is used to choose one of a number of mutually exclusive paths.

Please note that the only thing that can follow an ELSE on the same line 1s an
IF and a condition. The ELSE without an IF must be the last ELSE associated
with the initial IF. Also be sure that ELSE and IF are typed as two words, not
one.

IF statements may be “"nested” to any depth needed. For example:

IF X > 100 3 1
IF Y > X ;2
Z=34X ; 3

Y=0 ; &
ELSE HE
=1 ; 6

IF X > 200 H
Z=Y-100 ; 8

Q=Y+z ; 9

In this example, each IF controls all the statements with greater indentation.
For example, i1f the first IF (statement 1) is false, then control will pass
directly to statement 9. If statement 1 is true, then statement 2 decides if
statements 3 and 4 should be executed or skipped. The only way statement 8
will ever be executed is 1f statement 1 is true, statement 2 is false, and
statement 7 1s true. You should have no doubt about which IF statement an ELSE
"belongs to”; it is always the one with the same indentation.

Indentation plays a key role in making programs readable. You will soon be
able to just scan over a PROMAL program or subroutlne and immediately be able
to understand its logic. Since PROMAL does not have a GOTO statement, there
will be no mystery as to how you get to a certain statement. By just looking
at the indentation, you will have a "plcture" of the program organization.

WHILE STATEMERT

Next to IF, WHILE is the most commonly needed control statement in PROMAL.
It has the following form:

WHILE expression
statement 1 TRUE

statement n FALSE

The WHILE statement evaluates the conditional expression. If it is TRUE, the
indented statements are executed, as in an IF statement. After the last
indented statement is executed, control returns to the WHILE statement and the
condition 18 re-tested. The loop is repeated until the expression evaluates as
FALSE; contrel then passes to statement n, which starts in the same column as
the WHILE statement. The indented statements in a WHILE lcop may be executed
zero or more times. For example:

Copyright (C) 1986 SMA Inc. Rev. G

PROMAL LANGUAGE Systems Management Associates, Imc. 3-29

il
<o

SUM
X=0
WHILE < XLIMIT
SUM + X

+1

s
2
MO

This program fragment forms the sum of the integers from 0 to XLIMIT. At the
end of the loop, Z will be equal to XLIMIT.

REPEAT STATEMENT
A REPEAT statement is very similar to a WHILE statement, except that the

condition is tested at the end of the loop instead of the top. The REPEAT
statement has the following form:

REPEAT
statement 1

UNTIL expression

The indented statements are executed one or more times. After the first
execution of the indented statements, the conditional expression is evaluated.
If the result is FALSE, control passes back to the top of the loop. If the
statement is TRUE, control passes to the next statement after the UNTIL. For
example:

REPEAT
CHAR = GETC
UNTIL CHAR = “A”

GETC is a standard LIBRARY function which returns a key from the keyboard.
Therefore this loop waits for an “A” to be typed, ignoring all other input.

FOR STATEMENT

The FOR statement Is similar to a BASIC FOR-NEXT loop, but is more restric-
tive. A FOR loop has the form:

FOR Iter = Low TO Hi
statement 1

statement n

Iter must be a variable of type WORD, and Low and Hi must be expressions which
evaluate to the lower and upper bounds for the loop. For example:

WORD BUFFER [100]

WORD I

FOR I = O TO 99
BUFFER [I] = O

éopyright (C) 1986 SMA Inc. Rev. C

3-30 Systems Management Assoclates, Inc. PROMAL LANGUAGE

will initialize the array BUFFER to 0. Note that the iteration varilable must
be a simple variable, not an array element or expression, and must be type
WORD. Also note that the loop must iterate upward, not downward (as is
permitted in BASIC). There is no "STEP" size option as in BASIC; the step slize
is always 1. The indented block of a FOR loop 1s always executed at least
once, even if Low is greater than Hi. These restrictions allow the FOR loop to
execute very rapidly. If you need a FOR loop which doesn”t meet thesge
requirements, use a WHILE loop instead.

CHOOSE STATEMENT

The CHOOSE statement 1s a multi-way branch, somewhat similar to BASIC’s
ON—-GOSUB statement, or the CASE statement of Pascal. It has the following
form:

CHOOSE expression
choice 1
statement 1
choice 2
statement 1
ELSE
statement j

statement k

The CHOOSE statement works like a multiple-choice test. The expression is
evaluated, and each of the choices listed below is compared to it in success-
ion. When a match is found, the indented statements are executed. If no match
is found, the indented statements after the ELSE are executed (think of the
ELSE as "none of the above"). In any event, control always winds up at
statement k, the first non-indented line after the ELSE. For example:

CHOOSE GETC
-B-
X=0
START
e
CONTIN
~Le
X=9999
LASTLINE
ELSE
PUT "Illegal key letter”
X=1

The program fragment above inputs a character from the keyboard (function
GETC). If the character is “B”, then X is set to 0 and the START subroutine is
called, and control transfers to the last line (¥X=1). If the character is “C”,
the CONTIN subroutine is called instead, and control then passes to the last
line. TIf the character does not match any of the cholces, then an error
message 1s output (the PUT does this), and control passes to the last line.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-31

The choices for the CHOOSE must match the type of the expression in the
CHOOSE line exactly, and the expression must mot be type REAL. Note that this
means if you have a CHOOSE with an expression of type WORD or INT, and your
choices are small BYTE constants such as 0, 2, 100, etc., you must remember
to promote the choices to type WORD or INT.

WRONG! RIGHT

WORD NUM WORD NUM
CHOOSE NUM CHOOQSE NUM
1 l:+

PROCESS_I PROCESS_}
2 2:+

PROCESS_? PROCESS_Q
ELSE ELSE

PROCESS OTHER PROCESS_pTHER

Any CHOOSE statement can be simulated with an IF statement with an appro-
priate number of ELSE IF clauses. However, CHOOSE will often be more efficient
since you do not have to spell out each comparison explicitly.

The CHOQSE statement also has an alternative form where the word CHOOSE
appears alone, for example:

CHOOSE

CHAR < ~ -
CONTROLCHAR

CHAR > $7F
ILLEGALCHAR

ELSE
NORMALCHAR

In this form, each of the choices is evaluated in succession until one
evaluates TRUE. If all of the choices are FALSE, then the indented statements
after the ELSE are executed. This 1s exactly equivalent to an IF with several
ELSE IF clauses, except you do not have to write the ELSE IF s explicitly.

BASIC users should note that after the indented statements are executed
for one of the choices, control automatically passes to the first non-indented
statement after the ELSE; you do not need to put a GOTO after each like you do
for a BASIC ON-GOSUB. Alsc note that the ELSE is mandatory, because it indi-
cates the final choice ("none of the above").

BREAK STATEMENT

Sometimes it is desirable to "break out”™ of a loop at a point other than
where the conditional test is done. The BREAK statement provides this capabi-
lity for WHILE and REPEAT loops (but mot for FOR loops!). For example:

Copyright (C) 1986 SMA Inc. Rev. C

3-32 Systems Management Associates, Inc. PROMAL LANGUAGE

WHILE TRUE ; (do forever)
IF 16K = “(°
IF (I+1)@< >= “a” AND (I+1)@{ &= 7z~
IF (I+2)8< =)~
BREAK
I=I+1
FOUND=1

This program segment will search all of memory for a single lower case alpha-
betic character enclosed in parentheses. Executing BREAK causes control to
immediately pass to the statement after the end of the most recent WHILE loop
(i.e., to the FOUND=1 statement).

NEXT STATEMENT

The NEXT statement 1s used to cause an immediate jump to the top of the
current WHILE or REPEAT loop (but not a FOR loop). For example:

INQUOTE=FALSE

COUNT=0
REPEAT
CHAR = GETC
IF CHAR="""
INQUOTE=NOT INQUOTE
NEXT
IF INQUOTE
NEXT
COUNT=COUNT+1
UNTIL CHAR=CR

This program segment counts the number of characters typed up to the next
carriage return, excluding characters enclosed in quotes (including carriage
returns in quotes). The NEXT statements pass control back to the top of the
loop so as to ignore characters in between (and including) quotes. There may
be better and easier ways to do this -— this is just for illustration.

NOTHING STATEMENT

The NOTHING statement does not perform any action, and the PROMAL COMPILER
does not generate any object code for a NOTHING statement. This may seem of
dubious merit, but is actually useful. For example:

REPEAT
NOTHING
UNTIL GETC = CR

This loop simply waits for a carriage return from the keyboard, ignoring all
other characters. The NOTHING statement fulfills the syntactical requirement
that at least one indented statement must follow the REPEAT, but it performs no
action. If you tried to leave out the NOTHING statement, you would get an
error message from the compiler.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-33

SHORTCUTS FOR CONDITIONAL STATEMENTS

You may recall that TRUE is represented by a byte with value 1 and FALSE by
a byte with value 0. Several "shortcuts” can be used to take advantage of this
fact to generate faster executing PROMAL statements. First of all, for a
varlable FLAG of type BYIE,

IF FLAG=TRUE
can be written equivalently but more economically as:

IF FLAG

Also the sequence:

IF X > 100
FLAG = TRUE
ELSE
FLAG = FALSE

can be more economically written as:
FLAG = X > 100
ESCAPE AND REFUGE STATEMENTS

The ESCAPE statement and REFUGE statement are unique to PROMAL and do not
have a counterpart In other structured languages or BASIC. PROMAL, like many
wodern structured languages, does not have a GOTQO statement, which results in
much cleaner, more readable and more bug~free programs. There are occasions
when you might wish you had a GOTO. This is best illustrated by an example.

Suppose you had a complex applicatlon program, with many layers of subrout-
ines. Suppose further that at some low-level subroutine you come to a point
where you need a plece of logic that could be paraphrased as:

IF Disaster
Print error message
Exit back up to the top level routine.

This is a common problem. Unfortumately, other languages do not provide a way
to "exit back up to the top level routine”. Instead, you must "unwind" all the
CALLs with RETURNS. 1In other structured languages, you typically "solve™ this
problem by testing some global "Disaster” flag after returning from a lower
level subkroutine to short—circuit further processing, for example:

LOYERSUB ; call lower subroutine
I# DISASTER ; 1f had problem in LOWERSUB
RETURN ;3 don”t go any further

Each higher level subroutine would perform the same logic, until you "unwind"
all the way back up to the desired routine. While this method works, it is
unwieldy and dilutes the performance and clarity of the program with a lot of
duplicate error checking.

Copyright (C) 1986 SMA Inc. Rev. C

3-34 Systems Management Associates, Imc. PROMAL LANCUAGE

PROMAL solves this problem a different way. The REFUGE statement can be
thought of as an “executable label"”, and the ESCAPE statement as a GOTO which
can exit back to a previously executed REFUGE.

The syntax of the ESCAPE and REFUGE statements is:

REFUGE n
ESCAPE n

where n is a constant between O and 2, allowing up to 3 different "refuges" to
be defined concurrently in a single program. (Note: actually, there is also a
REFUGE 3, but this is reserved for a special purpose and is described in the
optional DEVELOPER"S GUIDE). Executing:

REFUGE 2
defines the statement after it as refuge number 2. Subsequently executing:
ESCAPE 2

will cause an immediate re-entry into the last subroutine (or main program)
executing a REFUGE 2 at the line after the REFUGE statement, and will restore
the context of the subroutine at that point. By restoring context, we mean
that all intermediate variables, return addresses, etc., which would normally
be "pending” when a RETURN is executed are discarded, up to the point where the
refuge was executed. An ESCAPE 1s somewhat like a NEXT or BREAK statement,
except that Iinstead of just jumping to the beginning or end of a loop, you can
jump to anywhere you“ve been before. It is the programmer”s responsibility to
insure that you do not try to ESCAPE to a REFUGE in a routlne that has already
returned (which will leave control in no-man”s land!). On the next page is an
example of fragments of a program using a REFUGE and ESCAPE:

Copyright {C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc.

3-35

PROC ERROR ; print error wessage and escape
ARG WORD ERRNO

BEGIN

PUT NL, ERRORMSG[ERRNQ],NL ;display message
ESCAPE 1

END

PROC CHECKCHAR

BEGIN

IF CHAR <> LEGAL
ERROR 3

END

PROC PROCESSWORD
CHECKCHAR
END

PROC DOPHRASE
PROCESSWORD
END

PROC DOLINE
REFUGE 1 ;Come here after error
WHILE GETL(LINE)

DOPHRASE

END

Copyright (C) 1986 SMA Inc.

Rey. C

3-36 Systems Management Associates, Inc. PROMAL LANGUAGE

CHAPTER 5: PROCEDURES AND FUNCTIONS

PROMAL provides a greatly enhanced subroutine capability compared with
BASIC. Some of the most important characteristics of PROMAL subroutines are:

1. Subroutines may be either PROCedures or FUNCtions. Functions return a
value which may be used in an expression. Procedures do not return a
value.

2. Both procedures and functions must be defined (or "declared”) before
they can be called.

3. Functions and procedures are called by merely referencing their name in
a statement.

4. Both procedures and functions may be passed ARGuments which they may
operate on.

5. Both procedures and functions may have local variables which are known
only within the scope of the subroutine. These local variables may
duplicate other names outside the subroutine without interference.

6. Procedures and functions may be called recursively.

Let us now explain these concepts and show how to make effective use of
subroutines.

BUILT-IN FURCTIONS AND PROCEDURES

PROMAL does not have any built-in statements to do input and ocutput, like
BASIC PRINT and INPUT statements. JInstead, PROMAL relies on a LIBRARY of
pre—defined subroutines and functions to provide input and output. These
routines are always resident in memory, and are used by the EDITOR, EXECUTIVE,
and COMPILER as well as programs you write. When you use these subroutines,
they could easily be mistaken for a special statement. For example:

OUTPUT "Hellc World!"™

appears just like a statement. There is no "CALL" or "GOSUB" keyword to reveal
that this is really a subroutine call, with a passed argument of "Hello
World!". This 1s no accident. A design intent of PROMAL is that subroutines
should give you much of the power of adding your own statements to the lang-
uage. You call subroutines of your own in the same way.

The built-in subroutines are described ian detail in the LIBRARY MANUAL. At
this point we would like to introduce you to just the most important of these
routines, so that you can perform basic input and output operations.

Before you can call a subroutine, you must define it. For the LIBRARY
subroutines, this is done by having the following statement near the top of
your program:

Copyright (C) 1986 SMA Inec. Rev. C

PROMAL LANGUAGE Systems Management Associlates, Inc. 3-37

INCLUDE LIBRARY

This defines all the standard LIBRARY routines to the PROMAL compiler. For
now, it is sufficient for you to know that this LIBRARY gives the name and
location of each of the bullt—in routines. You can display the Library with a
TYPE L command from the EXECUTIVE.

SIMPLE OUTPUT

Probably the most fundamental of the standard procedures is called PUOT. It
outputs single characters or strings to the screen. It can have one or more
arguments. For example:

PUT "Hello world!" ,NL

This statement calls the PUT procedure and passes 1t two arguments to be
displayed. The first argument is the string "Hello world!”, and the second
argument is NL, the pre-defined "newline" character (which is the ASCII control
character CR and has the value 13 for the Apple/Commodore version of PROMAL).
Unlike a BASIC PRINT statement, you must explicitly output an NL each time you
want to start a new line. This makes it easy to build up a composite line with
several calls to PUT.

Please note that, unlike BASIC, yod cannot print the numeric value of a
variable with the PUT statement. You can only print strings or characters. To
print a numeric value, you will want to use the OUTPUT procedure.

FORMATTED AND NUMERIC OUTFUT

OUTPUT is a procedure for performing formatted output to the screen. It
accepts one or more arguments. The first argument must be a strimg. It is
called a format string, because it tells the format in which any additional
arguments should be printed. If you have ever used a BASIC version which
supports PRINT USING, OUTPUT is similar. Actually, it is most similar to the
PRINTF function in the C language.

The format string contains text to be printed on the screen as well as
formatting information. The special lead-in character # is used to start a
field specification (sometimes called a field descriptor), which tells how to
print something. For example:

INT 3ECS

SECS = 673
OUTPUT "The answer is #I seconds.", SECS

These statements will display:
The answer is 673 seconds.
The value of the argument SECS replaces the format field specification #I. The

"#1" indicates that the second argument should be displayed as an integer. The
most commonly needed field specifications include:

Copyright (C) 1986 SMA Inc. Rev. C

3-38 Systems Management Associates, Inc. PROMAL LANGUAGE

#1 Print the argument as a signed integer number.

#wW Print the argument as an unsigned number (not for REAL variables!)
#1 Print the argument as a hexadecimal number.

#s Print the argument as a string. -

#C Print a carriage return.

#E Print the REAL argument in scientific notation.

#R Print the REAL argument with a decimal point.

The OUTPUT statement can have more than two arguments. The format string must
have a field specification for each argument to be printed. For example:

WORD N

N = 257
OUTPUT "#C#W decimal = #H hexadecimal.”,N,N

will display:
257 decimal = 101 hexadecimal.

after a carriage return. Notice that the #C does not go with any argument; it
just prints a carriage return.

You can also specify a "field width" in the format string (for example, to
make columns of numbers line up). These options are fully described in the
LIBRARY MANUAL. For REAL ocutput, you normally specify both a field width and
the number of decimal places to he displaved, in the form:

fhw.dR

where w 18 the field width (from 3 to 12 characters), and d is the desired
number of decimal places. For example:

REAL BUCKS

BUCKS = 276.10
QUTPUT "$#7.2R",BUCKS

will display:

$ 276.10
whereas BASIC would always print $ 276.1 instead.
SIMPLE INPUT

Now that you know how to output to the screen, let”s see how you input from
the keyboard. The procedure GETL is used to get one line from the keyboard and
store it in an array as a string. GETL allows all editing features (backspace,

ingert, delete, CTRL-B, etc.) allowed by the EXECUTIVE. It returns when the
RETURN key is pressed. For example:

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Imc. 3-39

BYTE LINE[81]

GETL LINE

reads one line from the keyboard and puts it in array LINE. After the call,
the LINE array will be terminated by a 00 byte. It will not include the
carriage return. Normally only one argument is present for the GETL procedure,
and that argument is the address of where to put the line. Remember that the
name of an array without a subscript evaluates as the address of the array.
Optionally, you may include a second argument which is the maximum line length
to accept (excluding the O byte terminator). For example:

GETL LINE, 20

will read a line from the keyboard up to 20 characters long. Additional
characters on the line will be ignored. 1If the second argument is not
specified for GETL, a maximum of 80 characters cam be input.

The GETL statement is much more powerful than a BASIC INPUT statement
because GETL supports a complete set of line-editing keys, as shown in Table 1
of the USERS MANUAL. These keys are consistent with the editing keys used in
the PROMAL EXECUTIVE and EDITOR.

One of the most useful features of GETL is the abllity to recall prior lines
by pressing CTRL-B. Another powerful feature for many applications is the use
of function keys to "call up" pre-defined strings of up to 31 characters (much
like many commercial "keyboard enhancers”). The LIBRARY MANUAL describes how
to use FKEYSET to define a string to be substituted for a function key.

NUMERIC INPUT

How do you read in a numeric value from the keyboard? This is not quite as
simple in PROMAL as in BASIC, because PROMAL does not have a built-in statement
to read a number. Instead, you do it in two parts. First, you read a line
into a buffer as described above. Then you convert the value represented by
the string using function STRVAL or STRREAL. STRVAL converts a string to the
numeric value it represents of type INT, or WORD. STRREAL is used to convert
type REAL numbers. It is similar to the BASIC function VAL. For example, to
read a number called HEIGHT from the keyboard, you could write:

BYTE BUF [81]

WORD HEIGHT

BYTE INDEX

GETL BUF

INDEX = STRVAL(BUF,#HEIGHT)

The STRVAL function expects at least two arguments. The first argument is the
address of the string to be converted. The second argument is the address of
the variable to receive the value. To specify the address of the variable
(rather than the value), you need to specify the # operator, as shown above.
Forgetting the # in front of the variable is a common error that results in the
value beilng installed at whatever address is the current value of HEIGHT, so be
careful! Algso remember that the destination variable must be type WORD or INT,

Copyright (C) 1986 SMA Inc. Rev. C

3-40 Systems Management Assoclates, Inc. PROMAL LANGUAGE

not BYTE. Besides installing the value of the number into HEIGHT, function
STRVAL will return an Index of type BYTE. This index indicates the number of
characters which were scanned in the string before the end of the number. If
the INDEX is returned as 0, it indicates that no numeric digits were entered,
probably representing an error condition. For example, 1f you typed

123

then INDEX would be returned as 3 and HEIGHT as 123. This method may seem a
little ungainly and roundabout at first, but it allows a great deal of
flexibility and programmer-defined error recovery, which is essential for
serious programming. STRVAL also supports hexadecimal input, formatted input,
and variable numbers of inputs on a line. These options are described in the
LIBRARY MANUAL.

BASIC users accustomed to using the INPUT statement to prompt for a numeric
input from the keyboard and input it may want to incorporate the following
general purpose PROMAL routine. This INPUTR function will give a prompt for
input and return the REAL value that the user enters from the keyboard. If an
illegal input is entered from the keyboard, it repeats the prompt.

FUNC REAL INPUTIR ; Prompt
; Prompt for numeric input from keyboard, return one REAL value.
ARG WORD PROMPT ; Desired prompt

REAL TEMP ; Value to be returned

BYTE INDEX ; Index to # chars scanned

OWN BYTE BUF[21] ; Temp buffer for typed input line
BEGIN

REPEAT

PUT NL,PROMPT ; Display prompt

GETL BUF,20 ; Get typed input

INDEX=STRREAL(BUF, #TEMP)

IF INDEX=0 ; No legal digits?

PUT NL,"Please enter a numeric value”

UNTIL INDEX > O
RETURN TEMP 3 Return value typed in
END

A sample program fragment using this routine for Input might look like this:

REAL HEIGHT

REAL WIDTH

REAL AREA

HEIGHT=INPUTR ("Height of triangle? ™)

WIDTH = INPUTR{ "Base of triangle? ")

AREA=0. 5*HEIGHT*WIDTH

OUTPUT "#CArea of triangle is #12.4R square units.#C", AREA

Copyright (C) 1986 SMA Imc. Rev. C

PROMAL LANGUAGE Systems Management Asgociates, Inc. 3-41

An example in the STRVAL section of the LIBRARY MANUAL contains a variation of
the routine above for entering WORD or INT data instead of REAL values. For
your convenience, both these functions are provided on disk as source files
INPUTR.S and INPUTW.S, so you can easlly include them in your programs or
modify them to sult your individual needs.

The LIBRARY contains many more Input-Output routines, including file input
and output. We will postpone a discussion of these routines until later.

USER-DEFINED SUBROUTIRNES

When you define your own PROMAL subroutine, you write it in the following
general form:

{header}
{arguments}
{local wvariables}
BEGIN

{body}

END

The {header} is a single line that identifies the start of the subroutine.
It has the form:

PROC name
or
FUNC Type Name

which defines whether the subroutine will be a procedure or a functionm. For
example:

PROC SORT
declares the start of a procedure called SORT.
FUNC BYTE TESTPORT

declares the start of a function called TESTPORT which will return a value of
type BYTE. The type returned may be BYTE, WORD, INT, or REAL.

The {arguments} and {local variables} will be discussed very shortly.

The {body} part of the procedure or function is contained between the BEGIN
and END statements. It contains the executable statements of the procedure or
function. When program control reaches the END statement, the subroutine will
return to the calling program. Optionally, the RETURN statement can be used to
return before the END statement.

For FUNCtions, a RETURN statement 1s required and must be followed by an
expression which evaluates to the value to be returned by the function. For
example:

Copyright (C) 1986 SMA Inc. Rev. C

3-42 Systems Management Associates, Inc. PROMAI, LANGUAGE

RETURN YVAL+1

will return the value of YVAL+1l as the value of the function. Function values
will be covered in more detall shortly.

PASSED ARGUMENTS

A powerful feature of PROMAL is the ability to use arguments passed to
procedures and functions. BASIC does not support passed arguments (except in a
very limited seunse in simple function definitions using FNx, which is rarely
used). To use passed arguments, the PROMAL subroutine definition should
include one argument declaration line for each argument which is to be passed
to the subroutine. An argument declaration looks like a simple variable
declaration, with the word ARG in front:

ARG Type Name

Type is the desired data type which may be BYTE, INT, WORD, or REAL. Name is
the desired name of the subroutine, formed in the same way as other variable
names.

For example:

PROC SORT
ARG WORD N
ARG WORD PTR

declares two passed arguments, N and PTR, both of type WORD. The order in
which the arguments are declared is the same as the order in which the corres—
ponding values will be passed. TFor example, if the SORT procedure above was
called with:

BYTE ARRAY[100]

SORT 26, ARRAY

then when SORT begins executing, N will have the value of 26 and PTR will have
the address of ARRAY. As you can see, a procedure 1s called by simply writing
the name of the procedure to be called. Arguments are passed by putting the
arguments after the procedure name. Each argument can be an expression, and
arguments are separated by commas. When you call a procedure or function which
you have defined, the number of arguments must agree exactly with the number
you declared, or you will get an error message from the compiler. The initial
value of the arguments depends entirely on the values passed.

If the routine is later called with:
SORT CURSIZE+l, BUFFER

then N will have the value CURSIZE+l and PTR will have the value BUFFER. As
you might imagine, this substitution process makes subroutines very versatile.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Assoclates, Inc. 3-43

A very important fact about arguments is that the names declared for passed
arguments are local to the subroutine. This means that the name declared has
meaning only within the subroutine where it is declared. It may duplicate a
name used outside the subroutine for another purpose without harm. Technical-
ly, we say that the scope of the variable is local to the subroutine. This
means that you can write a subroutine for one program and later copy it into
another program without having to worry if the names you chose for argument
variables will "collide" with some other variable names already in use. For
example, suppose the following program fragment calls our sample routine:

N=11

SIZE=17

SORT SIZE,BUF
Z=N

After the SORT routine returns, what will be the value of N when it is assigned
to Z? Will it still bde 11 or will it be 17 because SIZE 1s 17 and was substi-
tuted for N in the SORT routine? The answer is that N will still be 11,
because the N in the subroutine is only meaningful within the subroutine where
it is declared.

PROMAL passes arguments on a "call by value” basis, with arguments passed
on the microprocessor”s hardware stack. This means that when you pass an
argument to PROMAL, the argument 1s evaluated and this value is substituted for
the local variable. Therefore, if the local variable”s value is altéred within
the subroutine, it will not affect the value in the calling routine. For
example, suppose that part of our SORT routine looks like this:

PROC SORT
ARG WORD N
ARG WORD PTR
BEGIN

N=0
Assuming we call the subroutine with:

SIZE=17
SORT SIZE, BUFFER

What will be the value of SIZE when the subroutine returns? Will it still be
17 or will it be 0? It will be 17, because the variable N is local to the SORT
routine, and contains a copy of the value of SIZE, not the SIZE variable
itself.

A passed argument need not have the same type as the type declared for the
variable in the subroutine, although in general it is good practice to make
them the same. If you pass a BYTE argument to a variable declared to be a
WORD, the value will be converted to a WORD as it is passed. For example:

BYTE SIZE
SIZE=10
S50RT SIZE, BUFFER

Copyright (C) 1986 SMA Inc. Rev. C

3-44 Systems Management Associates, Inc. PROMAL LANGUAGE

will work properly, even though SIZE is type BYTE and will be substituted for N
inside the subroutine, which has a declared type of WORD. Technically, the
declared variable is sometimes called a "formal parameter” and the value passed
in the call to the subroutine is called an "actual parameter”.

Although a BYTE actual parameter may be passed to a routine with a WORD
formal parameter, you should be very careful to omly pass a REAL argument to a
REAL formal parameter. Passing REAL variables to a routine expecting BYTE, INT
or WORD arguments will produce very strange results!

Sometimes you may want to modify a global variable which is passed as an
argument to a subroutine. 1In this case, the usual procedure is to pass the
address of the variable to be changed to the routine, and let the routine set
the value using the globally pre-defined array M, which is defined in the
library to be an array of bytes encompassing all of memory. For example, our
subroutine SORT may wish to sort the array of bytes pointed to by PTR. To set
the first value of this array to 0, for instance, we could write in the body of
our subroutine:

M[PTR]=0

Arguments must be declared as simple (unsubscripted) variables. You may
not declare an argument which is an array. This does not mean that you can’t
access a global array from inside a subroutine. You may do this freely. You
cannot declare the array inside the subroutine. It is also possible for a
subroutine to operate on an array whose address is passed as an argument. In
our example procedure, SORT, the array BUFFER was gilven as the second
argument. Remember that when an array name is used without a subscript, PROMAL
generates the address of that array. Therefore our call will pass the address
of the array to the subroutine, which is why PTR is declared to be a WORD.
Since PTR countains the address of the start of the array, elements of the array
can be accessed using the indirect operators, or by the M array as shown
above. For example:

BYTE BUFFER[10]
PROC SORT

ARG WORD N

ARG WORD PTR

BEGIN

IF PTRE< > (PTR+1)EL

END

SORT 10,BUFFER

The IF statement above will compare the value of the first and second bytes of
the array BUFFER.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-45

Installing a REAL value into a variable whose address is passed as an
argument can be accomplished by a block move of exactly 6 bytes from the
address of the local variable to the desired destination. See BLKMOV in the
LIBRARY MANUAL for information on block moves.

LOCAL VARIABLES

A local variable is similar to an argument, but has no initial value
defined. Local variables are known only within the subroutine in which they
are declared, and “"disappear™ when the voutine returns. Local variables are
most often used for temporary sterage within the routine. Local variables
should be declared after the last ARGument in the procedure or function. A
local variable declaration appears the same as a simple global variable
declaration. For example:

PROC SORT
ARG WORD N
ARG WORD PTR
WORD I

BYTE CHAR

declares two local variables, I and CHAR. The compiler knows these are local
variables and not global variables because they are declared within the subrou-
tine. Except for having no initial value, local variables behave identically
to arguments. In particular, they are allocated on a stack and therefore must
be simple variables, not arrays.

To 1llustrate the concepts of global and local variables, here 1s a com-
plete, simple function which returns the number of blanks in a string. Remember
that a PROMAL string is an array of bytes terminated by a $00 byte.

FUNC BYTE NUMBLANKS ; string
; return # blanks in string
ARG WORD STRINGPTR ;address of string
BYTE N scounter
BEGIN
N=0
WHILE STRINGPTREZ

IF STRINGPTRE@(=~ -~

N=N+1

STRINGPTR=STRINGPTR+1
RETURN N
END

There are a number of important concepts here. First, the line
WHILE STRINGPTR@(

will evaluate TRUE as long as the byte pointed to by STRINGPTR is not 0O; that
1s, unot end-of-string. Second, the line

STRINGPTR=STRINGPTR+1

Copyright (C) 1986 SMA Inc. Rev. C

3-46 Systems Management Assoclates, Inc. PROMAL LANGUAGE

is perfectly legal and does not change the address of the original string
passed to the subroutine. STRINGPTR is local to the subroutine and is initial-
ized to point to the start of the string, and can be used to step through the
string one character at a time.

Finally, notice that the varlable N, which 1s used to count the number of
blanks, must be initialized to 0 explicitly because PROMAL does not initialize
local variables to anything. The result of the function is returned via the
RETURN N statement.

If you call this function with the statement:
NBE = NUMBLANKS("Hello there everybody!")

then NB will be set to two. Notice that functions, unlike procedures, must be
called with the arguments enclosed in parentheses. This is because a function
can be part of a larger expression, for example:

GETL MYMSG
NBPl = NUMBLANKS{MYMSG) + 1

will set NBPl to the number of blanks in MYMSG plus 1.
OWN VARIABLES

Local variables may not be arrays, and the value assoclated with a local
variable "disappears"” upon exit from the subroutine in which it is defined
(because space for the variable 1s allocated on a stack). This meets the
requirenents of the vast majority of variables in subroutines. Sometimes
though, you may want to have a variable known only within the subroutine, but
which 1s an array or needs to preserve its value from call to call. This can
be done by declaring an OWN variable. For example, the statements:

OWN BYTE TEMPBUF[8]
OWN WORD COUNT

declare two variables whose names are local to the subroutine in which they are
declared, but which will maintain their values through multiple subroutine
invocations. The most common use of OWN variables is to provide a scratch
array needed for intermediate processing by a subroutine. OWN variables should
be declared after all arguments and local varlables, but before the BEGIN
statement in a subroutine.

GOOD PROGRAMMING PRACTICE WITH SUBROUTINES

It is considered good programming practice to add a comment after the
header line of a procedure or function definition which tells the function of
the subroutine, what it expects for input, what it returns for output, etc.
Many PROMAL programmers like to put a comment at the end of the header line
listing the required arguments. If you do this, it will be easy to refer to
the header line for a quick reminder of what arguments are expected. Finally,
it 1s a good idea to put a comment on each argument declaration and local
variable, identifying the purpose of the variable and any constraints on its
use.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Assoclates, Inc. 3-47

You should make frequent use of procedures. It is gemerally best to keep
procedures short. Most PROMAL routines should have only a few lines of code.
The PROMAL COMPILER, EDITOR, and EXECUTIVE contain hundreds of subroutines with
less than twenty lines of code. If you have a procedure of more than about 50
to 100 lines, it should probably be broken up into lower—level subroutines. It
i1s often a good idea to use procedures for various phases of processing, even
if the procedures are only called in one place in the entire program. PROMAL
subroutine calls require very little overhead time. Therefore in general you
need not worry about extra procedure calls slowing down your program the way
GOSUBS slow down BASIC. Remember, PROMAL doesn”t have to search for your
subroutines the way BASIC does. The PROMAL compiler generates the address of
the routine during compilation, so calls are very fast, and take the same
amount of time no matter where in the program the subroutine definition is
located.

Subroutines are named the same way as variables. It is often a good 1dea
to pick a verb which describes the malan action of the subroutine for its name.
Then when you call the subroutine with one or more arguments, the statement
will be very readable, for example:

DISPLAY SPACESHIP
calls procedure DISPLAY with an argument of SPACESHIP.

You can learn a lot about procedures and functions by studying the sample
programs on the PROMAL diskette.

RECURSION

PROMAL fully supports recursion. This means that it is permissable for a
procedure or function to call itself, or for procedure A to call procedure B
which in turn calls procedure A again. This capability is very important in
certain programming disciplines, such as writing compilers, artificial intelli-
gence applications, and in symbolic math. It is also possible to have forward
references to procedures and functions. Techniques for recursive programming
are described in Appendix J.

The ability to perform recursion on the Commodore 64 and Apple II is
limited by the architecture of the 6502 processor, which only has a 256 byte
stack. Although PROMAL has been carefully written to work around this limita-
tion as much as is practical, you should not expect too many levels of nesting
(or recursion) before you get a STACK ERROR message. You will use up more
stack space as the number of local variables or passed arguments increases. A
typical function with one passed argument and one local varlable can call
itself about 40 times before stack overflow occurs. This is why it is possible
to get a stack overflow error while compiling a program with an expression that
is very complicated and uses many levels of parentheses. The compiler uses
recursion extensively to parse statements and can run out of stack space as
repeated recursive subroutine calls are made to process complex statements.

Copyright (C) 1986 SMA Inc. Rev. C

3-48 Systems Management Associates, Inc. PROMAL LANGUAGE

USING THE INCLUDE STATEMENT FOR MULTIPLE SOURCE FILES

For large programs, it is not practical to edit the entire program at once.
Instead, you should break up your source program into several files. Your
main file can then have an INCLUDE statement for each of the sub—-files. You
have already seen how the INCLUDE statement Is used to include the LIBRARY
definitions in your program. You can do the same thing for your own programs.
For example, the statement:

INCLUDE FILESUBS

will cause the compiler to pause at this point in the main flle and compile all
the lines in the file FILESUBS.S before continuing.

You may put an INCLUDE statement anywhere you can put a declaration. A
".5" extension will be assumed for the file name if one is not specified. The
INCLUDE file can have a drive or directory prefix. For the Commodore 64, due
to limitations of the Commodore 1541 disk drive, you caanot have nested include
files (that is, a file INCLUDEd in the compilation cannot 1itself contain
another INCLUDE statement). For the Apple LI, INCLUDE files may be nested up
to 3 deep. However, you may need to speclfy more than three buffers for ProbQS
{see the BUFFERS command in the PROMAL USER”S GUIDE) in order to use nested
INCLUDEs. INCLUDE statements can alsoc be used to import definitions from
separately compiled modules, as is described later in the LOADer section.

ENABLING AND DISABLING LISTING OUTPUT WITHE THE LIST STATEMENT

The L option on the COMPILE command is used to enable listing cutput for
the compiler. When making a listing, you can also disable the listing for
parts of your program with the LIST statement. The LIST statement can appear
anywhere a declaration can appear. It can have elther of the following forms:

LIST Constant
or
LIST

The first form enables the listing if Comstant evaluates to a non-zero
value and disables the listing if it is zero. The second form restores the
listing mode to whatever it was prior to the previous LIST (on or off). This
form is useful at the end of a subroutine package which has the listing turned
off, where it is not known if you will want the listing ON or OFF after the end
of the subroutine package.

You may have any number of LIST statements in a program. If the L option
is not specified on the COMPILE command, no listing will be made regardless of
any embedded LIST statements. For an example, if you TYPE L, you will see how
the listing of the LIBRARY is disabled.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Assoclates, Inc. 349

CONDITIONAL COMPILATION

Sometimes you may have several versions of a program which vary only
slightly. For example, the PROMAL EXECUTIVE is slightly different for the
COMMODORE 64 version and the APPLE II version. In cases like this, you may
wish to take advantage of PROMAL”s conditiomal compilation capability.
Conditional compilation allows you to generate several versions of a program
from a single source file (perhaps with INCLUDEs), by specifying which version
you wish to compile on the COMPILE command line. Here”s how it works.

Inside your program source file, you can "bracket” the source lines which
should only be compiled for a certain version. This is done by inserting a
line above the first version-dependent line, containing a question mark in
column one followed immediately by a single character representing the version
for which the following lines are to be assembled. For example, you might
choose “A” for an Apple-dependent portion and “C” for a Commodore-dependent
section:

PROGRAM MYPROG
INCLUDE LIBRARY
TA

PUT NL,"The COLOR command Is not supported on the Apple.”
?

?2C
COLOR=NUMVAL
?

In this example, there are two conditionally compiled blocks, each of a
single line. The first block is started by the ?A and is only intended to be
complled if we want an Apple version. The ? by itself (exactly in column 1)
terminates this block. The second block is started by ?C and terminated by
the second plain ? character.

Selecting which (or neilther) block should be compiled is selected by the V
(version) option on the COMPILE command. For example,

COMPILE MYPROG V=A
will cause the Apple version to be compiled, and
COMPILE MYPROG V=C

will cause the statement COLOR=NUMVAL to be compiled instead. If you don’t
specify either V=C or V=A on the command line, then neither block will be
compiled.

Conditional compilation is sort of like a simple IF statement, except that
if the conditional block is skipped, the compiler does not generate any code at
all for those statements; the result is equivalent to removing them with the
EDITOR (or, more precisely, to "commenting them out” by putting a semi-colon in
front of each).

“Copyright (C) 1986 SMA Inc. Rev. C

3-50 Systems Management Associates, Inc. PROMAL LANGUAGE

You can specify a conditional block for either or two or more versions. For
example:

TAC

starts a conditional block which will compile if elther V=A or V=C is
specified, but won”t otherwise.

If no V option is specified, the compiler will compile a block which starts
with

7%

if it appears. This is useful for embedding an error message to remind the
user that a version must be specified on the command line. For example:

PROGRAM MYPROG

7%

*%% YOU MUST SPECIFY V=A OR V=C TO COMPILE THIS PROGRAM! ***
?

INCLUDE LIBRARY

If you compile this program without the V option specified, the compiler will
attempt to compile the warning line, giving an error message and displaying the
line. If you specify a V option, the warning will not be compiled.

You may have any number of conditional blocks in a program. However, you
may not nest conditional compilation blocks {(that is, you can”t have a
conditional block inside another conditional block). The size of a conditiomal
block is arbitrary, and may span INCLUDE files. It is your responsibility to
insure that each block 1s terminated by a ? in column 1. You may have any
number of single character version indicators following the ? character which
begins a conditional block, but you may specify only one character on the V
command line option (if you specify more, all but the first character will be
ignored, so V=APPLE 1is equivalent to V=A).

The RELOCATE.S file on the PROMAL SYSTEM DISK illustrates the use of
conditional compilation.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Imc. 3-51

CHAPTER 6: INTERFACING

This chapter describes how your PROMAL program interfaces with its
environment, including:

1. Disk files.

2. The printer.

2. The EXECUTIVE.

3. Your Apple II or Commodore 64 computer hardware.

FILES AND DEVICES

The PROMAL USERS GUIDE contains a section on the requirements for naming and
using PROMAL files and devices on your computer. You may wish to review this
material, particularly Table 3 and Table 4, before proceeding with this
section, which describes how to input and output to files and devices from
within your PROMAL program. 1In particular, please remember that PROMAL file
names normally have at least two characters, while device names have a single
character. Also remember that the system will normally assume a default file
extension of ".C" for file names if no file extension 1s specified.

PROMAL provides functions and procedures in the LIBRARY to input and ocutput
to files and devices. The same routines may be used to access a file or
device (such as the printer).

OPENING AND CLOSING FILES

Before a file or device can be accessed, it must be opemed. The library
function OPEN performs this task. The OPEN function returns a file handle
{sometimes called a file descriptor), which is a pointer to a table maintained
in memory by PROMAL, used to control file I/0. This file handle should be
assigned to a variable of type WORD. Once the file is open, the file handle
can be used to direct subsequent I/0 to the file desired. For example:

WORD INFILE

INFILE = OPEN("MYFILE.D","R")

opens file MYFILE.D for reading. The second argument must be of type BYTE (not
string!) and indicates the mode of operation, chosen from the following:

“R” (or omitted) Open the file for read access.
W Open a new file for write access.
A" Open an existing file for append access.

“B” (Not available on Commodore) Open for both read and wrilte access.

If the file handle is returned as 0, then the open was not successful, and
an error code is available in a globally predefined variable called IOERROR.
IOERROR will be one of the following:

Copyright (C) 1986 SMA Inc. Rev. C

3-52 Systems Management Associates, Imc. PROMAL, LANGUAGE

IOERROR Meaning (if file handle returned as 0)

No error, normal result

Illegal mode character

Illegal file or device name

Disk drive is not ready (or wrong volume name for ProDOS)

File not found

File already exists (for W™ access attempt)

No free channels or buffers (too many open files)

Attempt to write on write-protected disk ("W or “A” access)
Other Other error, see Commodore 64 disk manual or Apple ProDOS manual.

SN E=EO

You should always test for an open fallure before attempting I/0 to the file or
device. For example:

WORD INFILE sfi1le handle for input file
INFILE = OPEN ("MYFILE.D","R7)
IF INFILE = O
IF IOERROR=4 ;the most likely error
ABORT "MYFILE.D file not found."
ABORT "#CDisk OPEN error #W",IQERROR
s Open was successful...

You can also open the devices for input or output in the same way, for
exanmple:

INFILE = OPEN ("W",”R”)

opens the Workspace for read access. Recall that the Workspace 1s a single
in-memory file with a fixed maximum size (variable size for the Commodore 64).

WORD PRINTER
PRINTER=CPEN("P","W")
IF PRINTER=0

PUT WNL,"CANT QUTPUT TC PRINTER"

opens the printer device for output and checks the file handle for a successful
open.

FUNCTIONS FOR FILE AND DEVICE 1/0

Probably the most commonly used routines for accessing files are GETLF and
PUTF. Function GETLF gets a line of text from a file or device, and procedure
PUTF outputs characters or strings to a file or device. The first argument for
all file-access routines must be the file handle of the previously—opened
file or device. Function GETLF returns TRUE if it successfully got a line, and
FALSE if end-of-file was encountered immediately. For example:

WHILE GETLF(INFILE, BUFFER)

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-53

reads a line from the file opened successfully with file handle INFILE and
installs a line into the array BUFFER, which is assumed to have been previously
declared as an array of bytes. The WHILR statement is frequently used in
conjunction with this function to continue reading until end-of-file. The bedy
of the WHILE loop contalnsg whatever processing is to be done on the line. You
may specify an optional third argument on functilon GETLF which specifies the
maximum number of characters to be returned from the line. GETLF should only
be used to read text files, not compiled programs.

Procedure PUTF is similar to the screen—output routine, PUT, except that
the first argument must specify the file handle of a successfully-opened
file or device. For example:

WORD OUTFILE
OUTFILE = QPEN ("MYFILE.T", “W")
IF OUTFILE = O
PUT "Unable to open MYFILE.T for output.”
ABORT
PUTF OUTFILE,"This line goes to MYFILE.T",NL
PUTF OUTFILE,"So does this." ,NL

Like PUT, PUTF can contain any number of strings or single character argu-
ments to be output. It will not output a carriage return unless explicitly
indicated. PUTF can put any kind of data byte out to a file, not just print-
able characters.

The OUTPUTF procedure is equivalent to the OUTPUT procedure for formatted
output, except that the first argument must be the desired file handle. For
exanmple:

OUTPUTF OUTFILE, "#C#H #S",LINENUM,LINE
outputs to the file previously opened.

Other functions are available for single character and block input—output
to files and devices. These are described in the LIBRARY MANUAL.

STDIN AND STDOUT FILE HANDLES

When your PROMAL program begins, you already have two open file handles
available for use. These are the globally predefined WORD variables STDIN and
STDOUT. By default, these file handles normally point to the keyboard and
screen, respectively. However, they can be redirected to any file or device
when your program is executed by an EXECUTIVE command (See the MEET PROMAL and
PROMAL USER”S MANUAL for details). Therefore if you ,input from STDIN and
output to STDOUT, your program” s output will be redirectable under EXECUTIVE
control. For example:

PUTF STDOUT,"This goes to the screen or where I redirect it.”, NL
PUTF STDOUT,"So does this.”

Copyright (C) 1986 SMA Inc. Rev. C

3-54 Systems Management Agsoclates, Inc. PROMAL LANGUAGE

You do not have to open STDIN or STDOUT. These variables already hold open
file handles when your program starts. If you want some output to go to the
screen no matter what, you simply use PUT and OUTPUT instead of PUTF and
OUTPUTF. This will bypass I/0 redirection set by the EXECUTIVE.

OUTPUT TO PRINTER

To output to the printer, simply OPEN the "P" device for output and use the
file output procedures with the for the printer specified as the first
argument. For example:

WORD PRT ; Handle for printer
REAL X
PRT=0PEN("P", "W") ; Open printer for writing
IF PRT = 0
ABORT"#cUnable to open printer.”
PUTF PRT, NL, "This line goes to the printer.”
X=124.35
OUTPUTF PRT, "#cThe answer is #12.4R",X

Note that just because you were able to OPEN the printer successfully does
not necessarily mean the printer is ready to receive output. If you OPEN the
printer, send it output, and the system appears to hang, it may be that the
printer is not on—~line or ready to print.

For the Commodore 64, you must remember not to power on the printer while
DYNODISK is on (also, for interfaces such as the CARDCO, the interface must be
off too; for the CARDCO interface, this means that the single wire must be
unplugged from the back of the computer while DYNODISK is on). You can turn
DYNODISK on and off from within a program, if desired (see Appendix G).

When doing output to a printer, be sure to send a NL after the last line,
since many printers keep the line in their internal memory until a CR is
received to cause them to print.

PRINTER CONTROL

Printers vary considerably in terms of interface to the computer. To help
reduce the difficulty in dealing with various printers aud printer interfaces,
PROMAL pre-defines several variables (in file PROSYS.S) to govern printer
ocutput.

For the Apple II, you can control whether or not PROMAL should automatically
send a LF after every CR to your printer. See APPENDIX E for details. Also,
if your computer is a IIc or is connected by a serial interface, you will need
to set another variable to perform graphics or escape sequences. This 1s also
described in APPENDIX E.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-55

For the Commodore 64, printers (or printer interfaces) often have special
modes selected on the basis of the "secondary address”. The following three
variables can be used to control your printer:

EXT ASM BYTE C64PSA AT $O0DF3 ; Desired secondary address (default 7)
EXT ASM BYTE C64PUL AT $ODF4 ; Bit 7=1=flip case (default=$80=yes)
EXT ASM BYTE C64PDV AT $ODF5 ; C-64 printer device # (default 4)

These variables can be set by your program before opening the "P" device, or by
direct commands from the EXECUTIVE or your BOOTSCRIPT.J file. See APPENDIX E
for details.

PRINTER ESCAPE SEQUENCES

Most printers use ASCII control characters or escape sequences to select
different attributes such as underlining, font selection, character size, etc.
It is very easy to send these sequences to the printer using PROMAL PUTF
statements, after you have set up your printer control options properly as
described above. For example, if your printer manual tells you that the
particular escape sequence you want 1s:

Escape sequence Decimal fora BASIC form

ESC W 1 27, 87, 49 LPRINT CHR$(27);CHR$(87);CHRS(49)
then in PROMAL you could just write:

PUTF PRT, 27, 87, 49
assuming you have previously opened the "P" device with handle PRT.

For Commodore 64 computers using interfaces such as the CARDCO, you may have
to select some special mode before sending escape sequences to your printer.
For example, the CARDCO model G+ needs to be opened with C64PSA=5 and C64PUL=0
{(as described above) in order to select "transparent mode”.

OUTPUT TQ SCREEN AND PRINTER

Sometimes you may want to output the same text to the screen and the
printer. This can be accomplished by executing the same PUTF or QUTPUTF
statement twice, using different file handles. For example, the following
program fragment supports selective output to either just the screen or to the
screen and printer:

WORD SP [2] ; File handles for screen, printer
WORD BOTHOUT ; =0 if just screen, 1 if screen + printer output wanted
WORD I
SP[0]=STDOUT
BOTHOUT=0
PUT NL,"Do you wish output to printer too?”
IF TOUPPER(GETC)="Y" ; yes?
SP[1]=0PEN("B","W”) ; then open printer for writing
BOTHOUT=1

screen file handle (already open)

Copyright (C) 1986 SMA Inc. Rev. C

3-56 Systems Management Associates, Imc. PROMAL LANGUAGE

FOR I=0 TO BOTHOUT
PUTF SP{I],NL,"This will go to printer & screen 1f BOTHOUT=1",NL

ARGUMENT PASSING FROM THE EXECUTIVE

PROMAL provides a simple mechanism for passing command-line arguments from
the EXECUTIVE to a program. The standard LIBRARY defines two globally prede-
fined variables which are preset by the EXECUTIVE before control is passed to a
program:

NCARG is the number of arguments passed to the program.
CARG[1] is a string containing the first argument, if present
CARG[2] is a string containing the second argument, if present

CARG[NCARG] is the last argument.

CARG[O] is a string containing the command which was executed (the
command name)

For example, if your program is executed by the EXECUTIVE command:

DOIT Myfile 2367

then on entry to the program,

NCARG will be 2
CARG[1] will be "MYFILE"
CARG[2] will be "2367"
CARG[O] will be "DOIT"

All the CARG array elements will be pointers to strings containing the argu-
ments. The program should consider these strings as DATA and not modify them
in place.

The EXECUTIVE normally treats blanks as the delimiters between arguments.
Both leading and trailing blanks are stripped off the arguments, so any number
of blanks may intervene between arguments. Also, the EXECUTIVE “folds" all
lower case letters to upper case. However, 1f an argument is enclosed in
quotes on the command line, then the entire quoted string is passed as a single
argument, including blanks (if any), without folding alphabetic characters. The
quotes themselves are stripped off. For example, if the command line was:

FIND "Now is the time for all good men”

then: NCARG will be 1
CARG[1] will be "Now is the time for all good men”

Command line arguments from the EXECUTIVE make a very useful way to pass
file names or numeric values to a program. For example, here is a program
segment which opens an lnput file specified on the command line for reading:

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3=57

PROGRAM PROCESS
; Program segment to open a file passed as the first command line arg.

INCLUDE LIBRARY

WORD INFILE ;Input file handle
BYTE LINE{[81] ;Buffer to hold a line from file
EEGLN

IF NCARG <> 1

ABORT "#C#***Error: PROCESS expects 1 argument which is a file name."
INFILE = OPEN{CARG[1])
IF INFILE = 0 ;open error?

PUT NL, "*%* Error: "

CHOOSE IOERROR serror code from OPEN

2
PUT CARG[l],” is not a legal file name.”
3
PUT "Disk drive not ready.”
4
PUT CARG[l}, " file not found."
ELSE ;unusual error of some kind
PUT "Can"t open ",CARG[1]
ABORT

WHILE GETLF (INFILE,LINE) ; read lines until end of file

Of course, you could make the error processing simpler if you wished, or
make it more sophisticated (perhaps by giving the user a chance to try another
file name), as is appropriate to the application.

EXTERNAL VARTIABLES FOR ADDRESSING SPECIAL MEMORY LOCATIONS
In BASIC you use PEEK and POKE to examine or set special memory locations in

your computer. With PROMAL, you can write the equivalent of PEEK and POKE as
follows:

BASIC PROMAL
X=PEEK({nnnn) X=M[nnnn]
POKE nnan,X M[nnnn]=X

where nnnn is the address of interest. The array M is predefined in the
LIBRARY to be an array of bytes encompassing all memory, sc M[0] 1s the first
byte of memory, and M[65535] is the last byte of memory.

However, there is an even better way to replace those PEEKS and POKES which
is both more readable and more efficient. You can give those special memory
locations a variable name of type BYTE, by declaring them to be EXTermal to
your program. For example for the Apple II:

EXT BYTE HIRESON AT $CO057
defines a variable named HIRESON of type BYTE which will be assigned the

address $C057. This is the Apple "soft switch" for enabling graphics mode.
Once defined, you can enable hi-res mode by merely saying,

Copyright (C) 1986 SMA Inc. Rev. C

3-58 Systems Management Associlates, Imc. PROMAL LANGUAGE

HIRESON=TRUE
which conveys a lot more meaning than POKE -16297,1.
INTERFACING TO COMMODORE 64 SPECIAL MEMORY LOCATIONS

PROMAL is very well suited for taking advantage of the special hardware
features of the Commodore 64, such as sprites, music synthesis, and color. It
1s far easier to program these fun-filled features with PROMAL than BASIC. In
BASIC, you depended on a lot of incomprehensible PEEKS and POKES to access the
special registers in the VIC-2 video chip and the SID sound synthesizer. With
PROMAL, you can give these registers a variable name and manipulate them just
like any other variable. This kind of variable is called an EXTERNAL variable,
because it is located outside the PROMAL program.

For example, the BASIC statement,
POKE 53281,7

sets the screen background color to yellow. With PROMAL, you might choose to
do the equivalent function like this:

CON YELLOW = 7
EXT BYTE BACKGROUND AT 53281 ;Screen Background color reg.

BACKGROUND = YELLOW

Once you have defined the address of the variable BACKGROUND, you can use
it just like any other PROMAL variable.

- Creating animation with sprites is much easier with PROMAL. For example,
suppose you wanted to have a tank moving horizomtally on the screen as one
sprite and a bomb falling vertically as a second sprite. You might do this as
follows:

EXT BYTE XCAR AT $DOOO ;X position of sprite O
EXT BYTE YCAR AT $D001 ;Y position of gprite 0
EXT BYTE XBOMB AT $D002 3X position of bomb

EXT BYTE YBOMB AT $D0O03 3Y position of bomb

XCAR = XCAR + CARSPPEED ;jmove car to right

YBOMB = YBOMB + BOMBSPEED ;move bomb down (+ is down)

In this case the address of each external variable was specified in
hexadecimal, which is frequently more convenient.

You can also directly manipulate screen memory or color memory as a PROMAL
array. For example, suppose you wanted to clear the standard screen, and then
"paint” 16 bars across the screen, each in a different color:

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-59

PROGRAM RAINBOW
INCLUDE LIBRARY
CON SCREENSIZE = 1000
EXT BYTE SCREEN [] AT $0400
EXT BYTE COLOR [] AT $D80O
WORD I
BEGIN
FILL SCREEN, SCREENSIZE, = ~
FOR I = 0 TO 15
FILL SCREENH40*I, 40, $AQ
FILL COLORH:0*I, 40, I
END

of bytes in screen memory
C-64 screen memory location
Color RAM

£fill the screen with blanks

one line of reverse—video blanks
set corresponding color for line

Notice that an external array declaration does not specify the size of the
array inside the brackets. This is because PROMAL does not need to reserve any
space within the program for this array (and because PROMAL does not do any
bounds—-checking on array references because this would adversely affect
execution speed). The procedure FILL is a built~in LIBRARY subroutine which
fills a portion of memory with a specified byte. Its first argument is the
starting address, the second is the number of bytes to fil11l, and the last
argument 1s the fill character.

Just for fun, let”s compare the above program segment to its equivalent
BASIC program:

90 SC=1024: SZ=1000: C0=55296
100 FOR I=SC TO SC+SZ: POKE I,32: NEXT

110 FOR I=0 TO 15
120 FOR J=40%1 TO 40*%I+39: POKE SC+J,160: NEXT
130 FOR J=40%1 TO 40*I+39: POKE CO+J,I: NEXT
140 NEXT 1

If you run the BASIC program and the PROMAL program above, and time how
long each takes to clear and paint the screen, you will find:

BASIC....about l4 seconds.
PROMAL...about 0.1 seconds.

This is another reason why PROMAL is much better than BASIC for animated
graphics. PROMAL is much faster. While not every PROMAL program will be 140
times faster than its BASIC counterpart as in this example, speed increases of
20 to 100 times or more are commonplace. Also, the larger and more complex the
program, the greater will be the relative speed improvement compared with
BASIC. Using the built-in LIBRARY subroutines wherever possible will speed up
your PROMAL programs even more, as well as making them smaller and easier to
debug.

Several PROMAL demonstration programs making extensive use of the graphics
and sound capabilities of the Commodore 64 can be found on the Commodore disk.
You can learn a lot about PROMAL from studying these samples and improv-
ing them or changing them to sult your own taste.

Copyright (C) 1986 SMA Inc. Rev. C

3-60 Systems Management Associates, Inc. PROMAL LANGUAGE

PROMAL. INTERFACE TO MACHINE LANGUAGE

Many BASIC programs have to resort to calling machine language subroutines
for some specialized functions. Usually you need machine language routines
because (1) BASIC is too slow, or (2) BASIC can”t do what you wanted. Because
PROMAL 1is so much faster than BASIC, and because it provides bit-level opera-—
tors, BYTE data types, and EXTernal variables, you may never need any machine
language at all with PROMAL.

If you do decide you need to call a machine language routine, PROMAL makes
it much easier to do than BASIC. PROMAL provides a clean interface to machine
language, both for routines you write and for ROM resident routines ia your
computers operating system. You can call any machine language routine in ROM
without writing any machine language interface code at all. You can call
machine language routines by name, with passed arguments, just like regular
PROMAL routines. You can even specify the contents of the hardware registers
and test the results when the machine language routines return (including the
flags). You can embed machine language routines inside PROMAL programs using
DATA statements or load them from separate files under program control. You
can also call all the built-in PROMAL LIBRARY routines from your machine
language routines.

Appendix 1 describes how to use and write machine language routines, with
examples.

Copyright (C) 1986 SMA Imnc. Rev. C

PROMAL LANGUAGE Systems Management Associlates, Inc. 3-61

CHAPTER 7: STRINGS AND ARRAYS REVISITED

Earlier you saw how to declare and use strings and arrays. This section
provides additional, more detailed information on using strings and arrays,
especially multi-dimensional arrays and arrays of strings.

STRINGS

PROMAL always stores a character string as an array of bytes, one character
per byte, plus a zero byte terminator indicating the end of the string.
Strings are usually manipulated by specifying the address of the first
character of the string. This is very convenient, since referring to an array
name automatically generates a reference to the address of the first element.
For example:

WORD I

BYTE BUF[81] ; Input line string

GETL BUF ; Input line from keyboard as string
I=BUF ; I points to string

Assuming that this program was executed and that the user entered "Hello"
from the keyboard, the memory for the variables might look like this, assuming
some arbitrary addresses for the variables (shown in hex):

5B04 5B44 Variable I points to BUF
5B94
’l’l
5B44 48 } 65 | 6C | 6C | 6F | 00 | xx | xx Variable BUF = "Hello”
F
r

The "=xx" in the diagram above means "don"t care” or "undefined”.

A big advantage of this representation of a string is that you can use the
same array to either refer to the whole string, or to access single characters
from the string. For example:

PUT BUF

will display "Hello", because the PUT procedure is passed the address of the
string ($5B44 in the diagram above). Anytime you write the name of an array
without any subscripts, the compiler uses the starting address of the array.
You could extract a single character from BUF because it is an array of bytes.
For example:

PUT BUF[1]

Copyright (C) 1986 SMA Inc. Rev. C

3-62 Systems Management Associates, Inc. PROMAL LANGUAGE

will display the character "e", the second character of the array (the first
character is in BUF[0]). Alternatively, you could write PUT (BUFHL)B{, which
would give the same result, because the expression will extract the value of
the byte at $5B45 and print it. On the other hand, PUT BUF+1l would display
"ello™, because the value $5B45 would be passed to PUT instead of the contents
of $5B45.

Remember that you can”t use an assignment statement to copy a string from
one variable to another (you need to use the MOVSTR procedure), but you can
assign the address of a string to a word variable using an assigmment
statement. Therefore the the statements:

WORD I
BYTE BUF[81]
GETL BUF
I=BUF

PUT I

would cause whatever line was typed to be printed out. However, if these
statements were followed by:

MOVSTR "Gone.”, BUF
PUT I

then “Gone.” would be printed, because I contains the address of BUF.

Similarly, you can”t compare two strings with the ordinary comparison
operators. For example:

DATA WORD BUF1 = “"Hello"
DATA WORD BUF2 = "Hello"
IF BUFl1 = BUF2 ; Wrong!

PUT "Strings are the same”

will never print anything because the string given by BUFl will never have the
same address as the string given by BUF2, even though the contents of the
strings are the same. This should be written as:

IF CMPSTR (BUF1l, “"=", BUF2)
PUT "Strings are the same”

ADDRESS OF AN ARRAY ELEMENT VERSUS CONTENT OF AN ARRAY ELEMENT

It is very important to understand the difference between the address of an
array and the value of an element in an array. Remember that almost all the
built-in Library functions and procedures for string handling expect the
address of the string for an argument (if the description of the routine says
it expects a string, this means the address of the string). If you pass a
single character where a string address is expected, you might create big
problems! Here”s an example:

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-63

BYTE BUF[81]

GETL BUF[0] ; This is wrong!

PUT NL, BUF

Here the programmer simply intended to read in a line from the keyboard into
the array BUF starting at the first element. The program compiles and appears
to work, but always prints out garbage. In fact, sometimes it crashes the
computer. Why?

The problem is that GETL expects the address of the buffer to receive the
input, but the expression BUF[0] evaluates as the wvalue of the first character
of the buffer. In other words, whatever character is in BUF[0] when the call
is made (some garbage value between 0 and 255) is passed to the GETL routine as
the address of where you want the input line to go. GETL obliges by putting
the input line someplace in the first 256 bytes of memory — but mot in the BUF
array. When BUF is printed by the PUT statement, it shows garbage, because it
had never been set! Because the first 256 bytes of memory is “zero page" and
holds eritical operating system and PROMAL information, overwriting it may
cause the computer to crash, necessitating a re-boot.

How do you fix this? 1In this case, the easiest way is simply to write:

GETL BUF

without the subscript, since PROMAL will always use the address of the array if
you write its name without subscripts.

But what if you don"t want the line to go right at the beginning of the
array? Suppose, for example, you have a two dimensional array such as:

BYTE SCRN [8l, 25] ; 25 lines of 80 characters each

Now suppose you want to input a line from the keyboard into the third row of
the array. Here is how you do this:

GETL #SCRN[0, 2] ; Read line from keyboard to 3rd row

The # operator tells the compiler to generate the address of the specified
array element rather than the value of that element. The third element
subscript is 2 instead of 3 because the first element is always 0, not 1.

More importantly, remember that the last element is 24, not 25. If you try to
read in the 25th line using:

GETL #SCRN[O, 25], 80 ; Wrong! Out of bounds!
GETL will oblige you by reading the line into memory over whatever happens to

be in memory after the end of the SCRN array! This will have unpredictable and
invariably unpleasant results.

Copyright (C) 1986 SMA Inc. Rev. C

3-64 Systems Management Associates, Inc. PROMAL LANGUAGE

To summarize, if a PROMAL Library routine (or any PROMAL subroutine for that
matter) expects a string, you need to specify an address. 1If in doubt about
how to make an address, place the # operator in front of the variable. 1If X
1s an array, then the following three statements are exactly equivalent:

PUT X
PUT #X
PUT #X[0]

All three statements will print the string which starts at the location of the
X array (and is terminated by a zero byte). The following statement 1s not
equivalent:

PUT X[O]

This statement prints only the first character of the string, because the
expression will evaluate to the value of the first byte of the array X (which
is assumed to be an ASCIIT character code). PUT is one of the few routines
that can accept a single character or a string. If the argument is less than
256, PUT assumes the argument is a single ASCII character and prints it. If
the argument is greater than 256, PUT assumes the argument is the address of a
string to be printed.

SEQUENCE OF MULTI-DIMENSIONAL ARRAY ELEMENTS IN MEMORY
When using multi-dimensional arrays, note that the array elements with the

first subscript will be adjacent in memory, so you should have the column
subscript first and the row subscript second. For example:

BYTE PAGE [9,25] ; Room for 25 lines of 8 chars each

PUT PAGE [0,5] ; display single character on 6th line, first col
PUT #PAGE [0,5] ; display entire string of 6th line

Subscripts for the page array are allocated like this in memory:

J
f

]

/

0,0 | 1,0 | 2,0

6,24 | 7,24

~le S

fi
i

.

3
1]

L
i
w7000 1,1 2,1).
fi
I

-
Another way to look at this 1s to say that an array declared as:
WORD STUFF [l0, 50]

declares 50 groups of 10 words each, not 10 groups of 50 words each. This
distinction becomes important if you use BLKMOV to move part of the array or
FILL to clear part of the array.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-65

ARRAYS OF STRINGS

Sometimes, especlally for sorting, you may wish to access an array of
strings. Using an array of strings is usually more efficient than using a two
dimensional array of bytes. The basic idea here 1s to use an array of type
WORD which contains poilnters into a singly-dimensioned array of type BYTE.

This is especilally true if you are simply going to sort the strings, because
when a string is out of sequence, you can just exchange the pointers instead of
exchanging entire strings. The sample program SORTSTRING.S provides a general
purpose string sort routine which can sort an arbitrary array of strings passed
48 an argument.

Here is a program fragment showing how to develop an array of strings by
reading them from the keyboard or a file. Input is terminated on end of file
(CTRL-Z from the keyboard).

WORD STRING[l00] ; Array of strings (polnters into BUF array)
BYTE BUF[4100] ; Storage for up to 100 strings of 40 char each
WORD I

WORD NSTRING ; Actual number of strings (not exceeding 100)
NSTRING=0
I=BUF
WHILE GETLF{STDIN, I, 40) ; Read string to address I
. STRING[NSTRING]=I 3 Install pointer in string array
I=I+41 3 Starting addr of next string
NSTRING=NSTRING+1

At the end of this program fragment, memory might look like this, assuming
the lines read were "First"”, "Second”, etc.

S5FDO STRING[O]
5FF9 STRING[1]
N N
5FDO SFF9
’AV{ A
F i r | s t |$00]| x el x| 8 e c| o n e
AL
A} ﬂv

The SORTSTRING demo program uses a similar technique, but makes more
efficient use of the BUF array. You may wish to use the sorting routine
providad in SORTSTRING for your own programs.

Copyright (C) 1986 SMA Inc. Rev. G

3-66 Systems Management Associates, Inc. PROMAL LANGUDAGE

PRESETTING GLOBAL VARTABLES TO ZERO

Unlike BASIC, PROMAL does not assign any initial value to variables declared
in your program {except DATA, of course). Often you may wish to simply set all
or a large number of variables to zero at the start of your program. Rather
than writing assignment statments for each variable explicitly, here is a trick
which will zero a block of variables. Assume you have a group of variables
declared like this:

WORD FIRSTVAR

BYTE LASTVAR [1]

where FIRSTVAR 1s the first variable you want to zero and LASTVAR is a dummy
variable you add after the last variable declared. At the start of your
program, use:

FILL #FIRSTVAR, #LASTVAR-#FIRSTVAR, 0 ; Zero all variables

This will set all the variables from FIRSTVAR up to (but not including) LASTVAR
to zero. Don”t forget the # operators! Also note that LASTVAR is an array.
This is necessary in the Commodore and Apple versions of PROMAL because the
PROMAL compiler segregates scalar and array variables. It assigns addresses
for all the scalar variables first (in the order declared), and then all the
arrays (in the order declared). DATA variables are part of the code area of
your program, not part of the data, so you don"t have to worry about
accidentally zeroing the value of any DATA identifiers.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Imc. 3-67

CHAPTER 8: THE LOADER

INTRODUCTION TO THE PROMAL PROGRAM LOADER

PROMAL for Apple and Commodore 64 gives you, the programmer, the ability to
control the loading and execution of programs. Your PROMAL program can load
and run other PROMAL or machine language programs, or pleces of programs called
overlays. Your program can also largely control where programs are loaded into
memory, and specify what action should be taken when a program or overlay
completes its task. Programs can call subroutines in other programs and use
global variables in other programs previously loaded, and you can explicitly
select which subroutines and variables can be used.

These capabilities are provided by the built in library procedure LOAD,
which is used to control the loading, execution, and disposition of compiled
programs and overlays. This procedure is extremely powerful, much more
powerful than the simple "chaining" capability provided by BASIC and some other
languages. To use it effectively requires an understanding of the loading and
execution process as used by PROMAL, plus some new terminology. The remainder
of this section deals with the LOADer. You may wish to skip over this section
until you are familiar enough with PROMAL to be writing large programs.

DEFINITIONS

The following definitions are relevant to this section. The meaning of
these terms will become clearer as the discusslon develops.

A Module is the object file produced by the PROMAL COMPILER (with no error
messages), with a .C extension, or a relocatable machine language program as
generated by the RELOCATE program (discussed in Appendix I).

An Entry Polnt is the place where execution begins in a module. In a PROMAL
source program, the entry polnt is represented by the BEGIN statement following
the last procedure or function in the source program.

A Logical Program is a collection of one or more modules which, taken
together, comprise a logically complete program for some purpose. A logical
program may have several modules, each residing on disk in a separate file. As
a minimum, a logical program has one module.

A Program is a complled PROMAL program. Normally it performs a complete
task by itself and i1s composed of an arbitrary number of procedures and
functions, with exactly one entry peoint, which is at the BEGIN statement
following the last procedure or function. The program source file begins with
a PROGRAM statement, 1s compiled from one or more source files, and the
resulting output module is contained in a single object file with a .C
extension.

Copyright (C) 1986 SMA Inc. Rev. C

3-68 Systems Management Associates, Inc. PROMAL LANGUAGE

An Overlay is a piece of a complex logical program which is kept on disk
until it is needed, and is then loaded into memory and executed under program
control. The overlay source file begins with an OVERLAY statement, and is
otherwise similar to a program. It has an arbitrary number of procedures and
functions and exactly one entry point, which is at the BEGIN statement
following the last procedure or function. It must be compiled separately from
the rest of the logical program which is associated with it, from one or more
source files, and the resulting output module i1s contained in a single object
file with a .C extension.

Loading is the process of taking a PROMAL module from disk and copying it
into memory, making any adjustments (called relocations) to the program
which are needed to correct addresses in the program or interface to other
modules, and transferring control of execution to the program, if desired.

Chaining is a special kind of loading where the program being loaded
replaces the program which called the loader.

BREAKING UP A LOGICAL PROGRAM INTO MODULES

There are several reasons why you might want to have a logical program
composed of several modules instead of a single, monolithic program:

1. The program is too large to fit in memory all at once.

2. The program 1s composed of logically separate modules (for instance, an
accounting system might have a main menu with separate modules for receivables,
payables, order processing, report generation, etc).

3. The program uses a logically-related group of subroutines which are not
frequently changed and therefore do not need to be re-compiled (for example,
the PROMAL graphics package or real functions).

4. The program takes too long to compile in its emtirety.

5. The program uses large machine language routines (this is discussed in
Appendix I).

HOW THE PROMAL LOADER WORKS

The PROMAL LOADer is a built-in procedure in the Library, called the same
way as other library routines. You have already seen the PROMAL loader
working, at least indirectly. When you type the name of a program you want
executed from the EXECUTIVE, the EXECUTIVE calls the LOAD procedure to rum your
program. When your program finishes, it returns through the LOADer to the
EXECUTIVE at the point from which it was called.

Your programs can in turm load and run other programs or overlays, by
specifying the name of the program to run, and optionally some flags indicating
how the program should be run. Briefly, the LOADer performs these tasks:

1. Looks to see if the specified program or overlay is already in memory,
and if so, executes it beginning at the entry point. Otherwise, 1t:

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-69

2. Locates the specified module on disk and determines how much memory is
needed for your program and its variables. If there is not enough room, it
unloads other programs (unless the module is an overlay) until there is enough
room.

3. The memory image of the module is copied from disk into the available
memory space.

4. The loader then reads tables which follow the memory image omn disk to
determine what adjustments are necessary to the memory image. These
ad justments are called relocations, and are needed to install the correct
addresses for branch instructions and subroutine calls. The loader can also
adjust address references to other modules already loaded (using EXPORTS and
IMPORTS, discussed later).

5. The loader then begins execution of your program at the entry point.

6. When your program completes (by comlng to the END of the main progranm,
calling EXIT or ABORT, or encountering a runtime error), the loader temporarily
regains control. It normally transfers control back to the program which
called the loader at the statement following the call to the loader. However,
if yvour program called ABORT or encountered a runtime error, control is passed
directly back to the EXECUTIVE instead.

The program which calls the LOADer to execute another program is called the
parent of that program. The new program is called the offspring of the program
that called the loader. The loader keeps track of the modules currently in
memory by a series of tables. These tables have room enough for up to six
modules to be resident in memory at once, plus the EXECUTIVE and EDITOR. These
modules may be all part of one logical program, completely separate programs,
or any combination.

The LOADer also uses several pointers for memory management. The most
important of theses are called LOFREE and HIFREE. LOFREE always points to the
first byte of unused memory, and HIFREE always points to the byte after the
last unused byte of memory. These pointers always point to a page boundary in
memory (that is, the address is of the form $XX00). Normally the LOADer
allocates programs from the bottom of available memory up, and variables from
the top down. Normally variables from one module can occupy the same memory as
variables for another program since the variables have no initial value and the
programs are not related. However, the key word OWN on the PROGRAM or an
OVERLAY declaration of a program can be used to force the loader to allocate
the variables immediately after the program, not shared with any other
programs. OVERLAYs always have their variables allocated immediately after the
overlay code.

The following memory dlagram shows a series of programs being loaded from
the EXECUTIVE:

Copyright (C) 1986 SMA Inc. Rev. C

3-70 Systems Management Associates, Inc. PROMAL LANGUAGE

HIFREE -
Prg A Prg A Prg A & C
Vars. Vars. Vars.
HIFREE —»
HIFREE ->
I LOFREE ->
| PRGC
M LOFREE -»>
E Prg B Vars Prg B Vars
M
0 PRGB PRGB
R LOFREE ->
Y
PRGA PRGA PRGA
LOFREE ->
(a) (b) (c) (d)
Time =-->

Time 1s represented on the horizontal axis and memory on the vertical axis,
with the highest addresses at the top. The diagram represents the memory
configuration for the Apple. The Commodore 64 configuration is somewhat more
complicated (see Appendix G), because the Workspace is also managed by the
LOADer, but the principle is the same. In this diagram, there are initially no
prograns in memory (except the EXECUTIVE/EDITOR, not shown). Then PRGA is
executed (part b of the figure), which 1s a normal module. PRGB is then
executed. PRGB has OWN on its program line, so its variables are allocated
after the code for PRGB instead of sharing its variable space with PRGA.
Finally, PRGC is run, which is another normal program, and shares its variable
space with PRGA. Since PRGC requires more variable space than PRGA, HIFREE is
lowered by the loader. HIFREE will always point to the start of the variables
for whatever program requires the largest block of shared variable space.

In this example, all the programs were small enough to fit in memory at
once. If PRGC had been too large to fit, the loader would first unload PRGB
and its variables and try again. If there was still not enough room, it would
unload PRGA. When a program is unloaded, the LOADer simply deletes its table
entry and moves the LOFREE ‘pointer down (and the HIFREE pointer up, if
possible), to recover the space. It does not clear the memory recovered.

HOW TO CALL THE LOADER

The declarations needed to access the LOADer are in a file called PROSYS.S
on the PROMAL system disk. Therefore you should have:

INCLUDE PROSYS
near the top of any program which will be calling the loader (or, if you wish,

you can extract the definitions from PROSYS and insert them directly into your
program with the EDITor).

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-71

The loader 1s a built-in procedure in the PROMAL library, which you call
with a statement of the following form:

LOAD Progname [,Bitflags]

where Progname 1s a string containing the desired wodule name (without the file
extension), and Bitflags 1s an optional argument of type BYTE which contains
several flags, described shortly. If the Bitflage argument is not specified,
it defaults to 0, for a normal load—-execute-return sequence. The locader also
sets a special variable called LDERR (also defined in PROSYS), as follows:

LDERR # Meaning

0 No error, module was successfully loaded/executed.

1 Module was not found in memory or on disk (or the name 1is
illegal)

2 Not a walid PROMAL module (e.g., not a successfully compiled
program).

3 Not enough free memory to load program.

4 Module required not loaded or relocation error (e.g., the

module to be loaded calls a subroutine in another module
which is not loaded).

For example,

PROGRAM MYPROG
INCLUDE LIBRARY
INCLUDE PROSYS
BEGIN
LOAD "YOURPROG"
IF LDERR <> O
ABORT "#C Unable to load YOURPROG"

END

will cause the module YOURPROG.C to be loaded into memory (if it is not already
there) and executed. After YOURPROG ends, control will return to the IF
statement following the call, which tests for a loader error (such as file not
found). If, however, YOURPROG called ABORT or encountered a runtime error,
control would never return to the IF statement above, but would return directly
to the EXECUTIVE instead.

LOADER OPTIONS USING BIT FLAGS

The second, optional argument of type BYTE can be used to specify a variety
of options which control the loading process. This byte is treated by the
LOADer as several one-bit TRUE/FALSE flags. These flags are given names in
PROSYS, defined as follows:

Copyright (C) 1986 SMA Inc. Rev. C

3-72

Systems Management Associates, Inc. PROMAL, LANGUAGE

Name

Definition

LDCHATIN

LDPRCLR

LDRELD

LDRECLM

LDNOGO

LDUNLD

$01

$02

$04

$08

$10

$20

Meaning to LOADer

Chain to program. If TRUE (1), the calling module
should be unloaded and replaced with the new module.
When the new module ends, control should return

to the parent of the calling module.

Pre-clear memory. If TRUE (1), all programs in memory
(including the caller) should be unloaded before
loading the specified program. Control will be
returned to the EXECUTIVE. This option is usually used
to guarantee the maximum available memory for a
program.

Re—load module. If TRUE (1), the specified module
should be reloaded from disk, even 1if it already

is in memory. If FALSE (0), it will not be reloaded
from disk unless it is not already loaded or the
memory-resident copy has been corrupted. Note that
specifying LDCHAIN=1 or LDPRCLR=1 also implies
LDRELD=1 automatically.

Reclaim memory on exit. If TRUE (1), then the
specified module should be unlcaded from memory

after it completes execution. This option is normally
used for overlays to make room for other overlays

in the same memory space. If 0, the module will
remain loaded on completion and can be re—-executed

by a subsequent LOAD without having to access the disk.

Do not execute. If TRUE (1), then the specified
module will be loaded into memory (if it is not
already loaded) without executing it. This option
is normally used to insure that a module is leoaded
and ready for later execution. It is also used to
control the sequence of loading of multiple modules
in a complex logical program. If 0, the specified
module will be executed.

Unload. 1If TRUE(l), then the specified module is
unloaded instead of loaded. No other action takes
place and all other bit flags are ignored. Note

that any program loaded above the specified module
will also be unloaded. If the calling module is itself
unloaded as a result of this process, control will
return to the parent program instead. This option

1s normally used to free up additional memory.

The bit flags above can be combined in any sensible combination. For

example:

LOAD "HISPROG", LDCHAIN + LDRECLM

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Assoclates, Inmc. 3-73

will remove the calling program from memory, load and execute HISPROG, then
remove HISPROG from memory and return control to the parent of the original
caller (probably the EXECUTIVE).

LOAD "NEXTCOMD", LDPRCLR4LDNOGO

will unload all programs from memory, load NEXTCOMD without executing it, and
return control to the EXECUTIVE (you might want to do this to setup the next
program to be run in memory).

USING VARIABLES, PROCEDURES AND FUNCTIONS IN OTHER MODULES

One of the most powerful features of the PROMAL LOADer is that when a module
is loaded and executed, it can call selected procedures and functions and
access selected varlables in other modules which are already loaded. Tt
cannot, however, reference procedures, functions, or variables in modules which
have not been loaded yet. This 1s a logical extension of the rule that
functions, procedures and variables must be defined before they are
referenced. It is up to you, the programmer, to determine which procedures,
functions, and variables will be made available to other modules. This is done
using EXPORTs and IMPORTs.

EXPORTS AND IMPORTS

In a PROMAL source program, the key word EXPORT can be used in front of any
declaration of a constant, data declaration, variable, procedure, or function
to designate an item which should be made available to other modules which wish
to use it. If your program contains amy EXPORTs, it must also have the
keyword EXPORT on the PROGRAM (or OVERLAY) line. OWN should also be specified.

For purposes of 1llustration, let us assume we will have a logical program
composed of two separate modules. The first module is a collection of
subroutines which you frequently use, called SUBPKG, and the other module is a
particular application program called MYPROG, which will use some routines in
SUBPKG (and 1n additlon has some procedures, functions and global variables of
its own). Assume you wish to compile the subroutine package and MYPROG
separately, because SUBPKG is already well-debugged and is fairly large.
Therefore during development of MYPROG you will not have to re—compile SUBPKG
each time you make a change to MYPROG, saving time. Here is a skeletal view of
the source for SUBPKG:

PROGRAM SUBPKG OWN EXPORT

INCLUDE LIBRARY

WORD 1

EXPORT WORD CLEARANCE

EXPORT CON WORD POOLSIZE=500

EXPORT REAL POOL[FOOLSIZE]

REAL THRESHOLD

EXPORT DATA REAL PI = 3.1415926535

EXPORT DATA WORD ERRMSGS [] =

"Pool exhausted”, “"Undefined pool element”, “Illegal pool element”,0

e

Copyright (C) 1986 SMA Inc. Rev. C

3-74 Systems Management Associates, Inc. PROMAL LANGUAGE

EXPORT PROC ADDTOPOOL ; Item
ARG WORD ITEM
END

FUNC REAL BESTGUESS

END

éiﬁORT FUNC BYTE CHECKERROR
END

BEGIN

END

This example illustrates how a subroutine package might make selected
identifiers available for use by other, separately compiled modules. 1In this
case, the names CLEARANCE, POOLSIZE, PQOL, PI, ERRMSGS, ADDTOPOOL, and
CHECKERROR will be exported. The names I, THRESHOLD, and BESTGUESS will not be
available for use by other modules. In other words, the subroutine BESTGUESS
can be called by other routines in this module (PROGRAM SUBPKG), but not by
other separately compiled modules.

When a program contains EXPORTs, the PROMAL COMPILER writes the definitious
of all the exported items to a special text file at the completion of
compilation. This text file will have the same name as is on the PROGRAM
declaration in the source file, but with a .E extension. For example, the
program above would cause the compiler to generate an export file called
SUBPEG.E, which might look like this:

IMPORT SUBPKG ;10/17/85
EXT FUNC BYTE CHECKERROR AT $0562
EXT PROC ADDTOPOOL AT $0250
EXT DATA WORD ERRMSGS [4] AT $000D
EXT DATA REAL PI AT $0007
EXT REAL POOL [500] AT $0000+84
CON WORD POOLSIZE = $01F4
EXT WORD CLEARANCE AT $0002

This file tells the definitions of the exported identifiers, relative to the
start of the SUBPKG module. It is not necessary to understand the exact
meaning of the individual lines. The top line tells the name of the exporting
program and the compilation date.

IMPORTING DEFINITIONS

Once the export file has been written by the COMPILER, you may INCLUDE it in
the compilation of another, separate module, to import all the desired
definitions. For example, another separately-compiled program which uses the
SUBPKG module might look like this:

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-75

PROGRAM MYPROG

INCLUDE LIBRARY

INCLUDE SUBPKG.E

WORD K

PROC AJUSTPOOL

BEGIN

POOL[K] = PI/4.

ADDTOPOOL

END

BEGIN

IF K > POOLSIZE
PUT NL,ERRMSGS[0]

END

Notice that this program uses the procedure ADDTOPOQL, the data items PI and
ERRMSGS, and the constant POOLSIZE without ever explicitly declaring them.
This is possible because the INCLUDE SUBPKG.E will cause the definitioms to be
imported. Please note that you must specify the .E extension on the INCLUDE
statement; otherwise, the compiler will look for the file SUBPKG.S instead by
default.

EXECUTING THE LOGICAL PROGRAM WITH SEPARATE MODULES

After compiling MYPROG, you will have two separate modules which work
together: SUBPKG.C and MYPROG.C. If you attempt to execute MYPROG.C from the
EXECUTIVE, you will get the message:

NOT LOADED OR RELOC ERROR: SUBPKG

This is because the SUBPKG module must be loaded before the MYPROG module which
calls it, and you haven”t loaded it. To solve this problem, you could type:

UNLOAD
GET SUBPKG
MYPROG

which would unload any existing programs (to make sure there”s enough room for
both modules), load the SUBPKG module, and then load and execute the MYPROG
module. The LOADer is able to relocate all the references to routines in
SUBPKG correctly because (1) it knows where it loaded SUBPKG into memory, and
(2) it knows the definitions of the references to the exported items in SUBPKG
as a result of the compilation of MYPROG.

Copyright (C) 1986 SMA Inc. Rev. C

3-76 Systems Management Associates, Inc. PROMAL LANGUAGE

In the example above, it is important to understand that the exported
routines in SUBPKG can be called from the MYPROG module, but that no routines
in MYPROG may be called from SUBPKG, even if you EXPORT them. This 1s because
the module doing the exporting must always be loaded before the module doing
the importing, and it is clearly impossible for both modules to be loaded
first!

USING A BOOTSTRAP TO CONTROL LOADING

If you have an application program with several modules which need to be
loaded in a certain order, you may want to write a bootstrap program, whose job
1s to load all the needed modules in the proper sequence and then run the main
program. Typlcally a bootstrap program might do this:

1. Display a signon message and any information (such as a menu of choices)
relevant to the program, that the user can read while the rest of the program
is loading from disk.

2. Load the modules needed in the desired order, using the LDNOGO option
on each LOAD call to prevent execution.

3. Load and execute the main module.

In some cases, you may even want to use a two-stage bootstrap loader, where
the first stage bootstrap loader signs on and then LOADs the second bootstrap
stage loader with the LDPRCLR option to insure all possible memory is available
for the application. The second bootstrap then loads all the modules needed to
get the program going, in the correct order to resolve all the dependencies.

In some cases you may also use the bootstrap loader to directly manipulate
the LOFREE pointer before LOADing some modules to reserve certain areas of
memory. For example, on the Apple II using graphics you may wish to load part
of your logical program below the 8K graphics page from $4000 to $6000, and
part above it. The following memory diagram, with program fragment to the
right, illustrates this (and other examples may be found in the PROMAL GRAPHICS
TOOLBOX Manual).

After programs BOOTD, MYSUBS, and MYPROG have been compiled (in that order),
then executing BOOTD from the executive will cause BOOTD to load the SGD and
WGS modules, as shown in (b) above, then sets LOFREE to $6000 under program
control to reserve the Apple Hi-Res screen area, and finally loads the MYSUBS
and MYPROG module to begins execution of MYPROG. Naturally you should ad just
the LOFREE pointer only with a good understanding of what you are doing!

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE

Systems Management Associates, Inc.

3-77

LOFREE —>
MyProg
MySubs
LOFREE ->
Hi-Res Hi-Res
Page 2 Page 2
$4000 ->
(unused) (unused)
WGS WGS
SGD SGD
LOFREE ->
BootD BootD BootD
LOMEM ->
(a) (b) (e)

USING OVERLAYS

PROGRAM BootD

INCLUDE PROSYS

LOAD "SGD",LDNOGO

LOAD "WGS",LDNOGO
LOFREE=56000 ;end hires
LOAD "MySubs”,LDNOGO
LOAD "MyProg"

END

PROGRAM MySubs OWN EXPORT
INCLUDE SGD.E

INCLUDE WGS.E

EXPORT PROC MyProc

END

PROGRAM MyProg
INCLUDE SGD.E
INCLUDE WGS.E
INCLUDE MySubs.E
MYPROC

END

In the previous example, separate complilation was used primarily as a

convenience.

Sometimes, it is a necessity.

This usually happens when a

logical program is simply too large and complex to fit into the available

memory space all at once.
overlays.

When this happens, the usual solution 1s to use
A logical program which uses overlays will have one or more modules

which remain resident in memory throughout execution, and will switch other
A typical overlaid program might be

modules in and out of memory as needed.

organized like this:

PROGA

AN

OVLA

OVLB

This tree diagram indicates that the logical program has a root module,

PROGA, and two mutually-exclusive overlays, OVLA, and OVLB.

By mutually

exclusive, we mean that only one of the overlays will be in memory at any given

time.

Therefore the overlays can all share the same memory space, so that the

total space needed will only be equal to the size of the largest overlay,
instead of the sum of the overlays.

Copyright (C) 1986 SMA Inc.

Rev, C

3-78 Systems Management Assoclates, Ine. PROMAL LANGUAGE

As far as the source code for an overlay is concerned, the only difference
between a program and an overlay is that the first line of the program should
contain the key word OVERLAY instead of PROGRAM, for example:

OVERLAY OVLA

The OVERLAY keyword also has the effect of including the OWN keyword on the
program declaration line. Otherwise, the loader would allocate the variables
belonging to the overlay right on top of the variables used by the rest of the
logical program, probably producing a disaster.

As far as the loader is concerned, there is only one difference between a
PROGRAM and an OVERLAY. The LOADer will mot automatically unload any modules
to make room for an overlay. If it did, there would always be the possibility
that the loader would have to unlcad the calling module to make room for the
overlay. This is contradictory to the normal use of overlays, which normally
return to the parent module when completed.

PROGRAM PRGC OWN EXPORT
INCLUDE PROSYS

LOFREE -> LOAD "OVLA", LDRECLM
LOFREE -> ces
A LOAD "OVLB”
| OVLA OVLB L
M END
E LOFREE ->
M OVERLAY OVLA OWN
0 PRGC PRGC PRGC INCLUDE PRGC.E
R ve
Y LOMEM -> END
(a) (b) (c)
PROGRAM OVLB OWN
Time —> INCLUDE PRGC.E

END

In our example program with 2 overlays, the memory diagram might look as
shown above, with the program skeleton to the right.

Note that the LDRECLM option was specified on the call te the LOADer.
This is the normal way to load an overlay which will be replaced by another
overlay later. Remember that the LOADer will not unload anything (including
another overlay) to make room for an overlay; therefore you will probably want
to specify LDRECLM to Insure that the overlay is unloaded when it is
completed. Of course, there 1s always the possibility that the rcot module
might want to call the same overlay again. In this case, you might want to
congider leaving the overlay in memory when it completes. If you need it
again, the LOADer won"t have to actually load it. If you need to replace it
with a different overlay instead, you can unload it explicitly using the
LDUNLD option, before loading the desired overlay.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-79

The sample program fragment above had only two overlays. In a complex
application, there might be several overlays, or even two layers of overlays,
as shown by the tree below:

PRGA
ovLa OVLB QVLC
OVLAl OVLA2 OVLC1 OVLC2 OVLC3

In this case, the overlays OVLA, OVLB and OVLC might export variables and
subroutines to the five overlays at the bottom of the diagram. In this case,
you would need to have the keyword EXPORT on the OVERLAY declaration:

OVERLAY OVLA EXPORT
CONSIDERATIONS FOR THE EXECUTIVE AND EDITOR

This section tells you how it is possible to lecad larger programs under
program control than it is possible to LOAD using the EXECUTIVE GET command, by
overwriting the space usually reserved for the EDITor. The system pointers
referred to below are defined in PROSYS5.5. Further memory map information is
included in Appendix G.

As was Indicated before, the LOADer always considers the free, allocatable
space to be between LOFREE and HIFREE. The EXECUTIVE and EDITor both occupy
the same address space, which is OSORG through MEMLIM (about 11.5K bytes), but
only one or the other of these programs occupies this space at any one time.

For the Apple II, a copy of the EDITor and the EXECUTIVE is kept in the
extra 64K memory bank, and each is copied back into the normal address space at
0SORG when needed (this does not apply for applications programs generated
using the GENMASTER program in the Developer”s package). Since the EXECUTIVE
or EDITor are always copied into main memory when needed, all the space,
including that used by the EXECUTIVE or EDITor, is available for alleocation for
your programs by the LOADer (about 25K). If you use the GET command to load a
program which overlaps O0SORG, however, it will be immediately destroyed when
the EXECUTIVE is copled back into memory when the GET command is completed.

The Workspace for the Apple II is kept in the extra 64K bank, so It is of no
concern.

Copyright (C) 1986 SMA Inc. Rev. C

3-80

Systems Management Associates, Imc.

PROMAL LANGUAGE

HIFREE —-»

LOFREE -->

Apple II
<-- MEMLIM
EXECUTIVE =HIMEM
or
EDITor
<{-- 0S0RG
3§ emory 99
Memory
{-- LOMEM

For the Commodore 64, the situation is somewhat more complicated.

HIMEM -->
HIFREE -—>
LOFREE —->

Commodore 64

EXECUTIVE
or
EDITor

Edit vars

Workspace

free
memory

) nenory

Memory with no programs loaded

{-- MEMLIM
{-— 0SORG
{== WLIM
{-- WORG
{-- LOMEM

The

Editor is kept in the 12K byte section of RAM under the ROMs from $DO0O to

SFFFF when the EXECUTIVE is active.

EXECUTIVE is swapped with the EDITOR.
under the ROMs when your programs run, and the EDITOR occupies the space from
When control returns to the EXECUTIVE, it is swapped with the

OSORG to MEMLIM.
EDITor again.
of "free memory”

When any program is executed, the

The EXECUTIVE 1s therefore "hidden”

For the Commodore, the Workspace is also allocated near the top

For large loglcal programs on the Gommodore 64, you may want to let the
LOADer use the space normally set aside for the EDITOR for your program(s).
This can be done by using a bootstrap program (as described above), which
should be the only program loaded (you can use a two-stage bootstrap to
This bootstrap program might have the following form:

guarantee this).

PROGRAM BCOTBIG OWN
INCLUDE LIBRARY
INCLUDE PROSYS

WPTR=WORG
WEOF=WORG
WSIZE=0
EDRES=FALSE
HIFREE=MEMLIM

5 Make workspace enpty

No workspace usable

H
;s EDITor will no longer be ther
; Reclaim Editor”s space

It would then Load and execute your programs, described in the section on
bootstrap programs, above.

When your program returns control to the EXECUTIVE, the EXECUTIVE will move

back into memory at OSORG.

automatically be re—loaded (from disk, for the Commodore 64).

If you subsequently use the EDITor, it will

Copyright (C) 1986 SMA Inc.

Rev. C

PROMAL LANGUAGE Systems Management Assoclates, Inc. 3-81

A GENERAL PURPOSE COMMODORE BOOTSTRAP FOR BIG PROGRAMS

Here 1s a bootstrap program which can be used to load and run a program
which 1is too large to run on the Commodore 64 without overwriting the EDITOR.
The program to be run must have OWN on the PROGRAM line. The Workspace will be
cleared and the EDITor overwritten. To use the bootstrap, first give an UNLOAD
command, and then type:

BOOTBIG Progname
from the EXECUTIVE, where Progname is your large, compiled program.

PROGRAM BOOTBIG OWN ;Commodore 64 only boot big program
3 Kills workspace and EDITor
INCLUDE LIBRARY
INCLUDE PROSYS
BEGIN
IF NCARG <> 1
PUT NL,"BOOTBIG ABORTED: No name given”
ABORT "#CUsage: BOOTBIG Progname"
HIFREE=MEMLIM ;The max memory please
WORG=MEMLIM ;No workspace
WPTR=MEMLIM
WEOF=MEMLIM
WLIM=MEMLTM
WSIZE=0
EDRES=FALSE ;EDITor not resident
LOAD CARG{1] ;Load & execute
IF LDERR <> O
ABORT "#cBOOTBIG LOAD ERROR $#H",LDERR
END

REMINDERS FOR SUCCESSFUL USE OF OVERLAYS AND SEPARATE COMPILATION

1. The root module or modules need to export any definitions needed by the
overlays, and the overlays each need to INCLUDE the exports (don™t forget the
.E extension).

2. Each overlay must start with:
OVERLAY Name [EXPORT]
and must be compiled separately.

3. Overlays may call routines and use variables exported from the root
module(s), or other overlays already loaded. The root module cannot contain
calls to routines or reference variables declared in the overlays. The only
way to enter an overlay 1Is by a call to LOAD, which will transfer control to
the eantry point of the overlay.

4. Remember that if you alter one module, no matter how trivial the change,
you must re~compile all modules which access it. This is entirely the
programmer” 8 responsibility; there is no way for PROMAL to check it for you.

If you fail to do this, the LOADer will relocate the program incorrectly,
probably resulting in mysterious crashes when your program runs. One way to

Copyright (C) 1986 SMA Inc. Rev. C

3-82 Systems Management Associates, Inc. PROMAL LANGUAGE

check for this is to look at the date which the compiler writes onm the first
line of the export file (.E extension). If this date is later than the
compilation date on any of the modules which INCLUDE it, you need to recompile
those modules.

5. 1If you manipulate LOFREE or HIFREE, remember that the low order byte
must always be 0 (i.e., always points to a page boundary).

6. You should always check the value of LDERR after any call to LOAD,
and print an appropriate diagnostic message if an error occurs.

7. Be sure to INCLUDE PROSYS (or copy the definitions from PROSYS.S
directly into your source program) for any program using the loader.

8. The LOAD procedure depends on the underlying operating system, memory
map and computer hardware for its operation. Therefore you should not expect
programs using LOAD or EXPORT to necessarily be completely portable to other
kinds of computers or operating systems, just because PROMAL is available on
that computer.

9. If you EXPORT anything, you must have EXPORT on the PROGRAM (or OVERLAY)
line, or you will get an "ILLEGAL EXPORT" error when the COMPILER encounters
the first EXPORT declaration. A PROGRAM declaration should also have OWN
specified (or else the variables will be assigned the same addresses as any
other module not specifying OWN).

10. Exporting scalar variables may increase the memory usage of your
program somewhat.

1l. A maximum of six modules may be in memory at once (8 with a program
generated with GENMASTER in the Developer”s package).

12. For the Commodore 64, using LOAD with the LDPRCLR option, the LOADer
will set HIFREE back to HIMEM after unloading all programs, to preserve the
space normally occupied by the EDITor. If you want the EDITor space to be
available for loading too, you need to set HIMEM to MEMLIM before calling the
LOADer (Caution: this will cause the Workspace (if any) to be moved up to the
top of memory too, and it will be clobbered when the EXECUTIVE swaps back in).
Your program should restore HIMEM before exiting back to the EXECUTIVE.

13. TIf you use multiple modules and have an ESCAPE in one module to a
REFUGE in a separate module, if you exit from the module with the ESCAPE via a
normal END, the program will still return to the parent program of the original
module.

Copyright (C) 1986 SMA Inc. Rev. C

