
For Apple II and Commodore 64 Computers

SYSTEMS MANAGEMENT ASSOCIATES, INC.
3325 Executive Drive
Raleigh, NC 27609
(919) 878—3600

Rev. C Sep. 1986

(PROGRAMMERS MICRO APPLICATION LANGUAGE)

FIGURE 1: Memory Maps. ...

TABLE 1: Runtime Error Codes.

......3

GENERAL DESCRIPTION-...3

SPECIAL CONSIDERATIONS...............4
MEMORY MAP DIFFERENCES...............5

WORKSPACE (W DEVICE) CONSIDERATIONS....7

SIZING YOUR APPLICATION PROGRAM........8

EXIT, ABORT, AND RUNTIME ERROR PROCESSING....9

SPECIFYING YOUR OWN ERROR RECOVERY....11

LOADING MACHINE LANGUAGE ROUTINES....11

BUILDING YOUR MASTER DISKETTE.12

COPY PROTECTION...............12

MISCELLANEOUS...

FINAL NOTES...... ...

Copyright (c) 1986 SEA Inc. Rev. C

INTRODUCTION....

System: Management Associates, Inc. DEVEIDPER’S GUIDE

—- _—-_I— I

-+.-._-I-_Ifl____
I.—__.I.=__ fl=l
55:35:11- ---'-'-'-'-
"'.'I--I.'I:'-_'-.'_'#-;:"
1'..-=-.—.—.1:=I=

:'_—_-'_-=_':_:'T;-T.__—__-E._
=.'I:-' -----r.-..I-HI*'

With the PROMAL DEVELOPER’S SYSTEM and this manual, you will be able to
generate diskettes containing your compiled PROMAL programs, which can be run
on computers which do not have the PROMAL system. This will allow you to sell
or distribute your application programs written in PROMAL to users who do not
own PROMAL. As long as the acknowledgement requirements of the License
Agreement are met, no royalties or other payments will be due to SMA, regard-
less of how many copies you sell or distribute.

If you have been using the PROMAL system, you already know that it is far
superior to BASIC for developing programs, and that programs execute much
faster. As a program author, you will also appreciate a very significant
advantage of PROMAL: since you only need to distribute the compiled object
code, you have a greater degree of security from unauthorized copies or
modifications. You do not have to provide the source code.

By using the DEVELOPER'S SYSTEM, you will be able to make disks which "boot
up" similar to the PROMAL Demo diskette, except that instead of running
the PROMAL EXECUTIVE and EDITOR, your application program will be executed.
You have control over what the programs are named and what program will be run.
Your application can also load any other PROMAL or machine-language programs it
might need.

The rest of this manual assumes that you already have a basic working
familiarity with the PROMAL system.

When you "boot up" the regular PROMAL system, you LOAD a file called
"PROMAL" and RUN it on the Commodore 64, or autoboot PROMAL.SYSTEM on the Apple
II. This file contains the PROMAL nucleus and all the routines in the library.
This file is called the runtime package. When this PROMAL runtime package
is run, it automatically loads the EDITOR and EXECUTIVE, as well as the LIBRARY
definitions, and begins execution of the EXECUTIVE.

The PROMAL DEVELOPER’S SYSTEM contains a special version of the runtime
package which loads and runs your application program instead of the EXECUTIVE
and EDITOR. You copy this runtime system and your application program onto a
MASTER DISIETTE using a special program called GEIHASTEI. You may then dupli-
cate and distribute your master diskette.

For the Apple 11, your application will autoload on power-up just like
PROMAL. For the Commodore 64, a user will LOAD the runtime package (which you
can name anything you want) from the master diskette and RUN it. The runtime
package will autoload your application program and execute it. No PROMAL
signon message or other indication that this is a PROMAL program will be
displayed; your program will be completely in control. Since there is no
EXECUTIVE or EDITOR, when your program terminates (if it does), it will exit as
described for procedure PROQUIT in the PROMAL Language Manual.

Copyright (C) 1986 SEA Inc. Rev. C

-°.._ v..-___--..vv..-..

INTRODUCTION

PROHAL DEVELOPER’S GUIDE

DEVELOPER’S GUIDE Systems Management Associates, Inc.

I_._-_I._I.I_I-a_l {H
-I——

_'=—-__——_.L'—"Fr:""

II—I-——-———-.-I.'.—I'_ I:-___=_-._=_- __ _ ..—
- ——'————-'——I-._.:r=.__-__ - _-_-

There is presently no provision for generating Commodore 64 cartridges or
ROM-resident code.

The general procedure you will use for preparing an application program
for distribution is:

1. Write, compile and test your application program using the regular
PROMAL system.

2. When you are satisfied that your program is correct, use the GENMAS-
TER program provided with the Developer’s disk to bind your compiled applica-
tion program with the special runtime package, and copy it to your desired
master diskette.

3. Duplicate the master diskette and distribute it as you see fit. You
must include the acknowledgement notice: '(program) is a licensed PRDMAL
application program. PROMAL is a trademark of Systems Management Associates,
Inc., Raleigh, NC.'. This notice must appear on the diskette label, in the
documentation, or on an initial screen display of your program.

This manual only addresses Step 2. But before discussing the mechanics of
Step 2, we will examine some of the special considerations which you should be
aware of when preparing an application program for mastering.

SPECIAL CONSIDERATIONS

The main difference between running your application under the regular
PROMAL system and as a dedicated application is that you will no longer have
the EXECUTIVE available. Therefore:

1. The user will not be able to issue EXECUTIVE commands.

2. Your program cannot receive command arguments from the EXECUTIVE.

3. Your program cannot EXIT or ABORT to the EXECUTIVE (if you do EXIT or
the PROQUIT procedure will be executed).

4. If your program encounters a fatal programming error which would
normally abort back to the EXECUTIVE (such as division by zero or calling a
library routine with an illegal number of arguments), it will not return to the
EXECUTIVE. A method is provided for you to recover from these errors within
your application program (discussed below).

5. Since you have no EXECUTIVE to execute selected programs in memory,
only your one application will be in memory at one time (unless you LOAD
additional programs from within your program).

6. The EXECUTIVE automatically closes any open files when you exit a
program in the normal PROMAL environment. Since you have no EXECUTIVE, you
should be sure to close any files that you Opened.

Copyright (C) 1986 SNA Inc. Rev. C

ABORT ,

Systems Management Associates, Inc. DEVELOPER'S GUIDE

ROM

HIMEM

WLIM

WORG
HIFREE

F000

E000

D000

C000

3000

A000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0000

STANDARD PROMAL DEVELOPER'S APPLICATION

Note: All addresses shown are approximate. See Appendix G of the PROMAL
Language manual for locations of the memory pointers. SFEOO-FFFF holds the
Function key definition buffer & CTRL-B buffer (both versions)

MEMORY MAP DIFFERENCES

Figure 1 shows the difference between the memory map for a typical compiled
PROMAL program when loaded by the standard PROMAL system (left), and by the
developer’s master disk (right). The primary difference is that the master
disk version does not have the EXECUTIVE or EDITOR in memory.

Piere 1

Memory Map - Co-odore 64

RAM ROM

HLIM -->
- EDIT

or WORKSPACE
- EXECUTIVE

- <-- MEMLIM WORG -->
EXECUTIVE BASIC MEMLIH BASIC

" or EDIT HIMEM
or VARIABLES

- user prog .

or vars. <-- HIFREE_ <__
VARIABLES

- <-- available
WORKSPACE_ (——

- available
<—- LOFREE _>

PROGRAM PROGRAM
- <-- LOMEM -—)

- PROMAL SYSTEM
NUCLEUS NUCLEUS

SYS. RAM SYS. RAM

Copyright (C) 1986 SMA Inc. Rev. C

LOMEM

IFREE

KERNALKERNAL

FFFF

DEVELOPER’S GUIDE Systems Manag Associates, Inc.

Memory Map - Apple II

Apple
MONITOR,
PRODOS,
& I-O

PROMAL
NUCLEUS

DEVELOPER’S APPLICATION

FFFF

FOOO

E000

D000

COOO

3000

A000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0000

Apple
MONITOR,
PRODOS,
& I-O

PROMAL
NUCLEUS

VARIABLES
(or EXEC)

available
space

PROGRAM

Disk Ruf
&

Sys. RAM

HIFREE

LOFREE

LOMEM

MEMLIM

HIFREE

VARIABLES

available
space

PROGRAM

Disk Buf
&

Sys. RAM

<—- Note 2

Notes:
1. A11 addresses shown are approximate. See Appendix G of the PROMAL

Language Manual for locations of the memory pointers.

2. In the Developer’s version, MEMLIM is 1 page lower than in the normal
version, to allow room for the Function key definitions (which are normally in
banked memory). The CTRL-B buffer is in main memory too, but is included in
the Nucleus for the Developer’s version.

Copyright (C) 1986 SMA Inc. Rev. C

LOMEM

HIMEM

Systems Management Associates, Inc. DEVELOPER’S GUIDE

The PROMAL NUCLEUS and SYSTEM NUCLEUS are very similar, except that the
SYSTEM autoloads your application program instead of the EXECUTIVE and EDITOR
when it is started up (NOTE: The developer’s SYSTEM file cannot be used to run
the EXECUTIVE or EDITOR). The application PROGRAM is identical in both cases,
and is simply your compiled PROMAL program.

Your application program will load in the same location as it would with the
normal PROMAL system with no other programs in memory. Your variables will be
loaded in the same way as normal, at the top of available memory (by default),
or immediately above your program code (if you specified OWN on the PROGRAM
line).

The only difference will be that on the Apple, you will have one page (256
bytes) less space at the top of free memory. This is because the Apple
developer’s nucleus supports the function key buffer and backtrack (CTRL-B)
buffer in main memory instead of in bank-switched memory. This permits your
PROMAL application to run on Apple IIe systems without the extra bank-switched
memory. Your programs will also run on IIe computers without 80 column
boards. In this case, your programs will run in 40 column mode. If you wish,
your program can test for the presence of an 80 column board as described in
the Apple reference manuals. Your application should not use the Workspace
device) on Apple computers without the extra bank-switched memory present.

If your Apple II program does not use function substitution strings, you can
use the page of space for a buffer, etc. To do this, move MEMLIM up one page,
set the key codes for BKEYFRI and BKEYFKL to $00 (see Appendix G), and use the
page immediately below MEMLIM as you see fit.

WORKSPACE (W DEVICE) CONSIDERATIONS (COMMDDORE 64 ONLY)

For the Commodore 64, another difference in the memory map is the location
and size of the Workspace. When your application runs from your master
diskette, the Workspace will be initialized to point to a large (11.5K byte)
area starting at $D000. This will have no effect on your program unless you use
the workspace from your program (the W device). This space is in the RAM of
the Commodore-64 which is "under" the ROM. Reading or writing the W device
automatically performs the necessary “bank-switching" to access this RAM. If
you wish, you may move the location of the workspace from the application
program by manipulating the pointers before starting to use the W device.

The file PROSYS.S defines five global variables associated with the
Workspace:

WORD WORG ($0DCS) points to the start of the available workspace.
WORD WPTR ($ODC7) points to the next byte to be read or written.
WORD WEOF ($0DC9) points to end-of-file (byte after the last byte written)
WORD WEND ($0DCB) points to the byte after the last byte of the workspace.
WORD WSIZE ($0DDB) is the size of the available workspace (=WEND-WORG).

WORG and WEND will not change unless you change them (in the Developer’s
System version). This differs from the standard PROMAL system environment,
where the workspace moves dynamically as programs are loaded and unloaded, and
is also controlled by the WS command of the EXECUTIVE. On either system, WPTR
and WEOF are moved automatically by the W device driver. A workspace with
nothing in it has WEOF = WPTR = WORG.

Copyright (c) 1986 sac Inc. Rev. C

DEVELOPER’S GUIDE Systems Management Associates, Inc.

—— --— -—'-—-Tris- --—-
figs.=__-

{fizé‘ifirlfiyflz

Suppose you wish to increase the Commodore Workspace size to use all
available memory. Before doing any input/output to the W device, you could
execute these statements:

INCLUDE PROSYS

WORG - LOFREE ; move start of W down to start of free memory
WPTR = WORG ; set workspace to empty
WEOF = WORG
HIFREE = LOFREE ; no more free space now
WSIZE = WEND-WORG

Besides using the available memory for an increased workspace, you could
also use it for loading machine language routines, for dynamically-allocated
buffers, for hi-res screen memory, or for whatever you need. The available
space starts at LOFREE and goes up to HIFREE, just as it does in the standard
system; the available space is just bigger.

WORKSPACE CONSIDERATIONS (APPLE II)

The Apple II Developer’s version keeps the same Workspace as the standard
system.

The Workspace in the Apple is in bank-switched memory. Therefore if your
application program is intended to run in IIe computers without any extra
memory (40 column mode), you may not use the W device.

SIZING YOUR APPLICAIION PROGRAM

For the Apple II:

Your new Master disk will have on it a copy of the ProDOS system, the PROMAL
runtime system, and your compiled PROMAL application program. You should copy
the PRODOS file onto the master disk after you format it using the ProDOS
Utility disk. The remaining files will be copied onto the master disk when you
run the GENMASTER program.

Your application program will have virtually the same amount of space and
will run at the same location as it does under the standard PROMAL system.
When GENMASTER runs, it will ask you if you wish to include support for REAL
arithmetic in the runtime package. If you say no, this is equivalent to
executing a NOREAL command from the EXECUTIVE, and will reduce the size of the
runtime package by about 2.5K bytes and increase the available space for your
application by the same amount. You will also be asked if you wish to reserve
space for the hi-res graphics page. Answering yes is equivalent to executing a
BUFFERS HIRES command from the EXECUTIVE. Another prompt will allow you to
specify the number of disk buffers, which is equivalent to a BUFFERS command in
the EXECUTIVE.

Copyright (C) 1986 SKA Inc. Rev. C

Systems Management Associates, Inc. DEVELOPER’S GUIDE

—I- “HI—I—Ih— I

%?EE _
_- -___1= ___;_I__ -——— ———-——- -—————-——— ---— -——_ -——- I—-—-- ———— ————.——-- _'-_—---'I——I-' -—'-—— u

E_'figs-:14...an. m

_"12::—L:==____'-_ '

The amount of disk space needed will be the sum of the PRODOS file (about
15K bytes), the RUNTIME.SYSTEM file (about 19K bytes), and your compiled
PROMAL application program. You may add any additional files you need to the
master disk after running GENMASTER.

The GENMASTER program on the DEVELOPER'S DISK will copy the special
runtime package plus your compiled application program onto your new Master
diskette. Actually there are two runtime packages provided, one with and one
without REAL support. The GENMASTER program will ask you which you wish to
use. The standard SYSTEM file is approximately 18K bytes, about the same as
the PROMAL file on the standard PROMAL system. Therefore your program will be
loaded into memory at the same address as the start of allocatable memory in
the standard version (as shown by the MAP command).

If you select the SYSTEM without REAL support, the SYSTEM file will be
reduced by about 2.5K, which will reduce the load time and enable your appli-
cation to be loaded at the same address as in the standard system after
executing a NOREAL command.

GENMASTER will unload the EDITor from memory while it copies the system
nucleus to your master disk. It will be automatically reloaded from disk later
if you need it. You may not use the EDITor, EXECUTIVE, or COMPILER as an
application program for GENMASTER. '

The amount of disk space used on your Master disk will simply be the sum of
whichever SYSTEM file you select plus the size of your compiled application
program. You may copy any additional files you need using the EXECUTIVE COPY
command.

EXIT, ARORI, AND RDNTIHR ERROR PROCESSING

In the normal PROMAL system, when your program executes to completion (or
executes a call to the EXIT or ABORT library routines), control is returned to
the EXECUTIVE. When you exit from your program on a Master disk generated by
the Developer’s System, you don’t have the EXECUTIVE to go back to, so the
PROQUIT procedure will be called instead. In a dedicated application program,
you may not want to have any exit at all.

This brings us to the subject of error recovery. There are several differ-
ent kinds of runtime errors that can occur during execution of a PROMAL
program. First, there are normal I-O errors (such as attempting to open a disk
which is not in the drive), which return error indications to your program so
that you may take whatever corrective action is required under program control.
These kinds of errors work precisely the same under either the standard system
or on your master disk system.

However, there is another class of more serious errors, the kind that
"shouldn’t happen" in a debugged program. In the standard system, these kinds
of errors abort back to the EXECUTIVE with an error message. For example, if
you divide by zero, you will get a message that says:

Copyright (C) 1986 SNA Inc. Rev. C

For the Commodore 64:

DEVEIDPER‘S GUIDE Systems Management Associates, Inc.

nr—::__'- 'E'.-:£:-E—'_—_=.a%.—.-
__.__=.-_

I'III'IJ'E'III'II'l-l'“'5
_—.=.11.;7. —
I—I——I ——-T--.— —II—

=.—.-—'.- .;—-.-_-"'-'-'

n--—-I--_-=mg-_ -..—-.— (G

->
When you run a program from your Master Diskette, you do not have an

EXECUTIVE to abort to. Instead, you can handle these kinds of errors in two
ways: (1) do nothing, in which case a default error message will be printed and
the computer reset; (2) provide your own error recovery using a REFUGE 3, as
described below. If you do nothing and a fatal error occurs, the system
will display an error message similar to this:

FATAL SYSTEM ERROR $01) AT $4731;
PRESS ANY KEY TO RESET COMPUTER

When the user presses a key, the program will exit via PROQUIT. Again,
remember that this only applies to the kinds of errors that would abort a
program, which should not be present in a debugged application. The meanings
of the error code displayed are given in Table 1.

Error # Meaning

1 Machine language breakpoint ($00) encountered. (Note: the address
of the breakpoint and register contents can be found in these
locations: address - $0651; A - $0C53; X — $0C54; Y - $0C55)

2 PROMAL breakpoint ($00) encountered at the indicated address.
Usually caused by a corrupted program.

3 (reserved)

Stack overflow. Generally caused by too many levels of nested
subroutine calls in combination with large numbers of local
variables.

5 Illegal opcode. Usually caused by a corrupted program (array
out of bounds, bad pointer, block move error, etc.)

Divide by 0 (real, integer, MOD or real overflow).

Required software package not loaded (for example, floating point
arithmetic without REAL support loaded).

8 Illegal number of arguments on FUNC or PROC. A Library routine
was called with too many or too few arguments.

9 I-O direction error. For example, trying to open the printer for
read access.

A Illegal argument for FUNC or PROC. The argument for a library
routine is out of range.

Copyright (C) 1986 SKA Inc. Rev. C

Table 1
Runtile Error Codes

*** RUNTIME ERROR: 0-DIVIDE
AT $167BA
*** PROGRAM ABORTED.

Systems Management Associates, Inc. DEVELOPER’S HIDE

'-l- a_|__...__ I

Elk—I- _-___.‘...___l_ -_.-...-.l.

..—- -———rr—ll—l—

—-II— —' fl.III- -I——

Illegal file handle. Tried to perform I-O to a file or device
that was not properly opened, or missing or defective file
handle argument.

I-O redirection error. Tried to redirect to an unopened or illegal
file or device.

CTRL-STOP key pressed (Commodore 64) or CTRL-RESET (Apple II).

SPECIFYING YOUR OWN ERROR RECOVERY

If you wish, you may provide your own error recovery to recapture control
within your application program after these errors. To do so, define a REFUGE
3 in your program, and control will return to this point on a fatal error. You
can determine what the error was by inspection of BYTE DRTERR AT $ODF6, which
will contain the error code as listed above. CAUTION: You should not add this
error recovery code to your program until your application is otherwise com-
pletely debugged, as it will interfere with normal PROMAL error recovery to the
EXECUTIVE. An example of error recovery is shown in the program fragment
below.

BYTE FATAL_ERROR
EXT BYTE DRTERR AT $0DF6

Set false while defining REFUGE, then TRUE
system runtime error #- ..

; Define runtime error recovery entry point...
FATAL_ERROR = FALSE ; Don't recover while just defining refuge
; Come here on fatal runtime error only.
REFUGE 3
IF FATAL ERROR
OUTPUT—“#Cflnexpected system error $#h",DRTERR
PUT CR,"Attempting to close all files..."
... ; (close files, cleanup whatever you can here)
PUT CR,"Restarting computer now..."
ABORT

FATAL_ERROR TRUE ; Turn on error recovery now

The purpose of the FATAL ERROR variable in the fragment above is to avoid
executing the recovery csde itself while you are merely trying to define its
location by executing the REFUGE 3 statement. Don’t forget that in order for a
REFUGE to be active, it must be executed, not just exist somewhere in your
program.

LOADING MODULES AND MACHINE LANGUAGE ROUTINBS

Since you cannot use the EXECUTIVE GET command to load separately compiled
modules or machine language routines, your application will have to load these
programs itself (if it needs any). You should use a bootstrap loader as
described in Chapter 8 of the Language Manual to perform this function. This
also applies to programs in the optional Graphics Toolbox. For machine
language routines, you can use either the LOADer or function MLGET, as
described in Appendix I.

Copyright (C) 1986 SEA Inc. Rev. C

DEVELOPER'S GUIDE Systems Manning Associates, Inc. ll

in- =---
:-———---'————-—

r_,_-_-.|,_—_,...,=_

.g._=_,.~..fimr-Eitt

BUILDING YOUR EASIER DISEEITE

A special PROMAL program called GENMASTER is provided on the DEVELOPER’S
DISKETTE. This is an interactive program which is used to copy the PROMAL
runtime nucleus and your compiled PROMAL application program onto the disk you
want to become your Master Diskette (which you should have pre-formatted). For
the Apple version, you should also copy the PRODOS file onto your newly
formatted master disk. You should run the GENMASTER program from the regular
PROMAL system. To run the program, insert the DEVELOPER’S SYSTEM DISKETTE into
the drive, and type:

PREFIX * UNLOAD
GENMASTER GENMASTER

This program is self-explanatory through its prompts. Simply pressing RETURN
will select the default. RETURN can also be used as 3 "YES" response to
prompts. You will have the opportunity to specify the name of the runtime
system and the program on the new master disk. For the Apple II, the runtime
system name must end in ".SYSTEM" to be acceptable to ProDOS. Once your Master
disk is made, it can be booted up like any other program. For the Apple II,
the program will auto-boot when the computer is powered on or CTRL-APPLE-RESET
is pressed. For the Commodore 64, you will type:

LOAD "SYSTEM",8
RUN

This of course assumes you accepted the default name of "SYSTEM".

COPY PROTECTION

If you are developing a commercial program, you will want to decide whether
or not you wish to employ some scheme to protect your disk from illegal
copying. This is entirely up to you. PROMAL neither encourages nor discour-
ages the use of copy protection schemes. Generally any protection scheme which
you can use with BASIC or machine language can also be employed with PROMAL, if
you wish. If you wish to employ copy protection, consult your mass disk
duplicating service or books on the subject for available techniques. A
discussion of copy protection techniques or ethics is beyond the scope of this
manual.

1. For the Commodore 64, DYNODISK works exactly the same as for the regular
system. If you simply want DYNODISK disabled in your application, you can
apply the same patch to the SYSTEM or SYSTEM_NR file as is described for file
PROMAL in Appendix N.

2. For the Apple II, the [RAM device will be handled exactly as in the regular
system. Therefore it will be enabled if the users has more than 128K and has
installed the /RAM device. Your application can be booted from [RAM in the
same way as regular PROMAL.

Copyright (C) 1986 SM Inc. Rev. c

For the Apple II: For the Commodore 64:

UNLOAD

Systems Management Associates, Inc. DEVELOPER’S GUIDE

“Ti
-_ I—'-l—-.-.._.l

- I ————— ——-— - ——--—--— -———--———— ———-— - — *—' -_-—_-___- -—"- '-'I-

="- ”nanny-Fir."——-”---i'

3. If you have purchased the optional source code to PROMAL, you may not
include it in whole or in part in any application you sell or distribute, nor
can you include the Compiler (not the Demo Compiler either).

4. If you use multiple modules (as described in Chapter 8 of the PROMAL
Language Manual) and have an ESCAPE in one module to a REFUGE in a separate
module, if you exit from the module with the ESCAPE via a normal END, the
program will still return to the parent program of the original module.

5. For IBM PC PROMAL there is only a Developer's version (no End-User’s
version), because programs are run under DOS.

6. A Source code listing on disk for the Developer's Runtime package (as well
as the regular runtime package and library) is available as an option from
SMA. Please call for ordering information.

7. For the Apple, you may wish to have your program ignore CTRL-C instead of
aborting. This can be done by setting the byte at $0DEO to $00.

FINAL NOTES

Check your DEVELOPER'S DISKETTE to see if a file called README.T is present
on the disk (using the FILES command). If so, type this file before attempting
to build your first Master diskette. If present, this file contains additional
information not covered in this manual. Other additional files may also
be provided on the Developer’s disk for informational purposes.

Copyright (C) 1986 SEA Inc. Rev. C

DEVELOPER’S GUIDE Systems Management Associates, Inc. 13

Copyright (C) 1986 SEA Inc. . Rev. C

This page is intentionally left blank

Systems Maggot Associates, Inc. DEVELOPER’S GUIDE

