
—--I.-I
'-'-n-l_ .'._._ - .—_=:1:— .'_'I'='. ._ _ - I Ir-_-_-

J. .' _--_-.| - ._.____=___-_ .
'T:.- I.—-.-:.:-' :.-_.-—--é '—
-—-=-—-—-———---—- If

The PROMAL COMPILER and EDITOR use un—allocated memory for scratch buffer
space, and under some circumstances use the Workspace and (in the case of the
COMPILER "B" option on the Commodore 64) the space normally occupied by the
EDITOR for buffer space. With care, user‘written programs may also do this.

Refer to the Memory Map of the System Area in Appendix G to understand the
variables referred to in this discussion, which are defined in file PROSYS.S.
Additional information is contained in the section on the LOADer.

When a user program begins execution, it can safely use all memory between
LOFREE and HIFREE for buffer space. This is the area shown as "FREE SPACE" by
the MAP command.

0n the Commodore 64, you may also safely use the Workspace for a buffer if
it is empty. The Workspace exists between WORG and WLIM-l. If WEOF = WORG,
then the Workspace is empty. In any event, the space between WEOF and WLIM-l
is unused (this is the "FREE WORKSPACE" area shown by the MAP command).
Naturally these pointers will change if you write the Workspace in your
program. They may also move if you use the LOADer to load a program or overlay
which does not OWN its variables (not recommended). You can "force" the
Workspace clear by setting WEOF and WPTR to WORG.

On the Commodore 64, if you want to use the space occupied by the EDITOR
for a buffer, you may do so. This is the space between HIMEM and MEMLIM. If
you specify "OWN" on the PROGRAM line of your program, for example,

PROGRAM MYPROG OWN

then you may use memory between WLIM and MEMLIM. This is because specifying
"OWN" on the PROGRAM statement forces the PROMAL EXECUTIVE to allocate your
global variables at the end of your program rather than at the high end of
memory as it normally would. If using the EDITor space, you should set the
EDRES flag to 0 (defined in PROSYS.S). The EDITor will be reloaded from disk
if needed later.

Note: This applies only while in a user-program. This area of memory is
absolutely vital to the EXECUTIVE when it is running.

By using the NOREAL command and using all the above techniques, it is
possible to free up more than 34K bytes of contiguous space for a user program
and data on a Commodore 64.

On the Apple II, about 28K can be made available for programs and variables
by using a NOREAL command.

Copyright (C) 1986 SEA Inc. Rev. C

APPENDIX E

DYNAMIC MEMORY ALLOCATION

MEMORY ALIDCATION Systems “smut Associates, Inc. 11-1

Copyright (C) 1986 SEA Inc.

This page is intentionally left blank

11-2 Systems Manage-ant Associates, Inc. MEMORY ALLOCATION

—___,=__|- H!a:_—_—_-__—__—
:—..'—_.'—_—_r.-I:EI-I.IflFI-qu.

III-l -——-———

This Appendix describes how to call machine language subroutines from a
PROMAL program. If you are not familiar with 6502 machine language program-
ming, you may want to skip this section. Because PROMAL is functionally very
close to machine language, it is normally not necessary to use any machine
language programming at all with PROMAL. However, if you want to use machine
language routines, a clean interface is provided. You can even pass arguments
to a machine language routine, just like a PROMAL subroutine.

The way you call machine language routines depends on what you want to do.
We might categorize the usual needs as follows, in order of increasing complex-
ity:

1. Call a ROM routine that is built in to your computer.
2. Call a small routine you wish to embed in DATA statements as part of

your PROMAL program.
3. Call a separate subroutine package, possibly with many routines and

passed arguments.

These cases are well-supported with PROMAL. We will address each in order.

PROMAL has a very powerful way of calling machine language routines. It is
especially useful for calling ROM-resident routines, such as the Commodore
Kernal routines or Apple II Monitor. Virtually any 6502 machine language
subroutine can be called directly from PROMAL with this method. This includes
subroutines which expect arguments passed in registers, or return values to the
caller in registers. This method can also be used to call machine language
subroutines embedded in PROMAL DATA statements. The key to this extremely
powerful and simple capability is the built-in JSR procedure, described below.

DECLARATION: (defined in PROSYS.S)

USAGE: JSR [Address [,Areg [,Xreg [,Yreg [,Flags

Procedure JSR calls a machine language subroutine at a specified address,
optionally loading the 6502 processor’s hardware registers with specified
values before the call. Address is the address of the desired routine. Areg,
Xreg, Yreg, and Flags are optional arguments which specify the desired values
to be installed in the A, X, Y, and flags (processor status word) registers,
respectively. All register arguments should be type BYTE. Naturally the
address must be type WORD.

In order to use the JSR procedure, you will want to include the following
declarations in your PROMAL source program (or INCLUDE PROSYS, since PROSYS.S
contains all these definitions):

Copyright (C) 1986 SEA Inc.

EHASHPROCJSRAISOFM
111]]

APPENDIX I

CALLING MACHINE LANGUAGE ROUTINES m PROMAL

MACHINE LANGUAGE Systems Hanagflt Associates, Inc. I-1

EXT ASM PROC JSR AT $0FBA ; entry point
EXT WORD MLP AT $0C51 ; Subrt addr
EXT BYTE REGA AT $0c53 ; A
EXT BYTE REGX AT socsl. ; x
EXT BYTE REGY AT $0C55 ; Y
EXT BYTE REGF AT $0C56 ; Flags

These lines declare the location of the built-in procedure JSR, and the
memory locations of copies of the processor register contents to be used. These
will be explained presently.

Here is how JSR works. When your PROMAL program executes a JSR statement,
the Address argument is copied into MLP, and any additional arguments are
copied into REGA, REGX, REGY, and REGF, in that order. The 6502 registers are
then loaded as follows:

REGA into the A register
REGX into the X register
REGY into the register
REGF into the flags (processor status word)

and a machine language jump to subroutine is performed to the address in MLP.

When the called machine language program returns (with an RTS instruction),
the contents of the registers will be saved in REGA, REGX, REGY, and REGF
before resuming execution of the next PROMAL statement. Your program can
therefore examine the contents of the registers at the time of return. This is
important since many machine language routines return values in the registers.

Any optional arguments on your JSR statement which are not specified are
not changed. Therefore, for instance, if you JSR to one machine language
routine and then JSR to a second routine with no registers specified, the
registers will contain the values returned by the first routine.

Some examples should illustrate the simplicity of this method. The
examples below refer to Commodore 64 "Kernal" machine language routines, as
defined in The Commodore 64 Programmer’s Reference Manual. All the examples
assume you have added the declaration lines given above.

EXAMPLE 1:
; Call SCREEN Kernal routine - returns X=columns, Y=rows.
JSR $FFED ; Kernal "SCREEN“ routine
OUTPUT "#C SCREEN IS #W COLUMNS BY #W ROWS",REGX,REGY

This program fragment calls the machine language routine at $FFED without
specifying any registers. It then prints the contents of the and Y registers
which were returned by the subroutine.

Copyright (C) 1986 514A Inc. Rev. C

Systems Management Associates, Inc. MACHINE LANGUAGE

"-5- _|_|_-_|.|. II_
'l——_|.|_|l_
_ _ ——-Il-_-.-l-

:'.:_I._::__- -—u; in:-F"=-__“=3
:—_i=='.-:-'-.-L-i---1:.-
=_'—.'-'=_E'l-:_ " ' 1—"
=i_f:'.u'-I viii-

oo, 0K,00,00

EXAMPLE 2:

CON CHKIN $FFC6 ; Kernal
CON CHRIN $FFCF ; I/O
CON CLRCHN = $FFCC ; routines
BYTE LINE[81]
WORD I
BEGIN
JSR CHKIN, 0,15 ; channel 15
I=O
REPEAT

JSR CHRIN input char
LINE[I]=REGA ; install char
I=I+l ; next location

UNTIL REGA=CR ; end of line?
LINE[I-1]=0 ; replace CR with end of line
JSR CLRCHN ; release channel
PUT NL,LINE,NL
END

This program fragment reads a line from the disk error channel and prints it on
the screen. It will normally display:

The JSR CHKIN calls the Kernal CHKIN routine, passing 0 in the A register and
15 in the X register to select channel 15. The loop repeatedly calls CHRIN,
which returns the character read from the disk drive in register A. The value
returned in register A is then installed in a string. When a CR is received
from the drive, the channel is closed, the string terminator added, and the
line displayed using an ordinary PUT call. Note that when using Commodore
channels like this you should be careful not to mix normal PROMAL I/O calls at
the same time your channel is open, because PROMAL uses Commodore channels to
do its I/O, and only one channel can be selected at a time. Also, channel 15
is always open to the Command/Error channel of the disk drive. If you open
your own channels, you should use channels and secondary addresses of 8 or 9 to
avoid conflicts with normal PROMAL disk files. Be sure to close them, too!

NOTES ON JSR USAGE

1. When you call JSR, the address is also an optional argument, although it
is usually specified. If no arguments are specified, a call is made to
whatever address is in MLP. In this way, you can call one out of a number of
possible subroutines selected from a table, by putting the desired address in
MLP before each JSR call.

2. If a machine language routine executes a BRK (breakpoint) instruction,
the address of the breakpoint and registers are stored in these same locations
before control is returned to the Executive.

3. For the Commodore 64, Do not attempt to call any routines in the BASIC
because PROMAL switches the BASIC ROM out of the Commodore 64 memory map.

Copyright (C) 1986 SMA Inc. Rev. C

ROM

MACHINE LANGUAGE Systems Wat Associates, Inc. I-3

I— —— __—— — _—————-

4. For the Commodore 64, the file REL_FILES.S on the PROMAL System disk
and DISKETTE.S on the optional Developer’5disk contain many illustrations of
how to use JSR to perform I/O using the Kernal. For the Apple, PRODOSCALLS.S
illustrates several examples of JSR usage.

5. The REGF register contains a copy of the processor flags. You can test
the flags returned by using the following statements:

IF REGF AND $01 ; true if the Carry flag is set
IF REGF AND $02 ; true if the Zero flag is set
IF REGF AND $80 ; true if the Minus flag is set

Many BASIC programs have machine language subroutines embedded in DATA
statements. These instructions are READ and POKEd into some unused area of
memory and then executed with a USR or SYS statement. You can also embed a
machine language routine (or routines) in PROMAL DATA statements, and execute
the code using JSR. It is quite a bit simpler than BASIC though, because you
do not need to use a loop to READ it and POKE it first.

There are two ways to set up an embedded machine language routine, depend-
ing on whether your routine is address-dependent or address-independent. An
address independent routine is one which will execute correctly regardless of
the address at which it is loaded., An address-dependent routine will only
execute properly at the address for which it was assembled. This distinction
is important because, in general, your compiled PROMAL program (and therefore
your data statements) will not be loaded into memory at the same location every
time.

If your routine is address-independent (runs anywhere), then you can
execute your machine language routine by simply using procedure JSR to call it
by name. If your program is address-dependent, then you will have to insure
that it is executed every time in a known location. The easiest way to do this
is to use procedure BLKMOV to copy it to a known location and then JSR to this
known location. This method is equivalent to the READ-and-POKE loop method
used in BASIC.

A machine language routine will be address-dependent if it contains any
references to addresses within the routine itself. For example, if your
routine does JMPs or JSRs to labels that are part of the routine itself, it
will not be address-independent. The same applies for a LDA of any data in the
routine. Conditional branches are okay, though, because they are coded as
displacements, not absolute addresses.

Copyright (C) 1986 SMA Inc. Rev. C

CALLING A MACHINE LANGUAGE ROUTINE EMBED. IN DATA STATEMENTS

1-4 Systems Management Associates, Inc. MACHINE LANGUAGE

EXAMPLE:

BYTE LINE [81]
WORD I

DATA BYTE TOLOWER []
$C9,'A’, ; TOLOWER CMP
390,6, ; BCC SKIP
$c9,$53, , GMT #'z’+1
$B0,2, ; BCS SKIP
$69,$20, , ADC #’a’—’A’
$60 ; SKIP RTS

BEGIN
PUT "ENTER A LINE:
GETL LINE
I=0
PUT NL,"IN LOWERCASE ONLY
WHILE LINE[I] ; not end of string?

JSR TOLOWER, LINE[I] ; convert char
; bump pointer to next char

PUT REGA ; show returned result
PUT NL
END

The program fragment above illustrates a call to an address-independent machine
language subroutine embedded in data statements. For simplicity, a trivial
routine was selected, which simply converts a character passed in the A
register to lower case if it is upper case and returns it in A. The line,

JSR TOLOWER, LINE[I]

calls the embedded machine language routine, no matter where the program is
loaded, passing the character desired in the A register. of course, the actual
conversion to lower case could be done much simpler with the PROMAL statements,

IF LINE[I] >= ’A’AND LINE[I] <= '2'
LINE[I] = LINE[I] + $20

but this is, as we said, simply for illustration.

If your machine language routine is address—dependent, you will need to
copy it to some unused memory area and then execute it, for example:

CON MYSUB $0334 ; Where to put M/L sub
DATA BYTE MYSUBCODE []
... ; (put hex code for routine here)
DATA BYTE SUBEND [] = O ; dummy byte to compute loc. of end of code

BLKMOV MYSUBCODE,MYSUB,SUBEND-MYSUBCODE ; Copy routine to known 10c.

JSR

Copyright (C) 1986 SMA Inc. Rev. C

I=I+l

MACHINE LANGUAGE Systems Management Associates, Inc. 1-5

E.':=.—_= :—_':.I.'_—_ ._-__ _ ---_ -....- _
- "—-'-I-I-.-—.-.-

'EI'

In this example you should assemble your routine for a starting address of
$0334, of course.

For medium or large assembly language packages, embedding machine language
programs in data statements is not practical. For this situation, there are
two more ways to interface PROMAL to your assembly-language routines. Both of
these methods involve writing a separate assembler program and assembling it.
The resulting machine language program is then loaded from disk by your PROMAL
program and executed when needed. Your assembly package can have any number of
subroutines, which may be either procedures or functions, and are called by
name, just like a PROMAL routine.

There are two ways your machine language routine can be loaded into memory.
The simpler but less powerful way is to use function MLGET, described below, to
load your program at a specified address in memory. MLGET can load machine
language programs generated by virtually any assembler for your computer. The
only trouble is, you have to find a place to put your program. Since PROMAL
allocates memory dynamically for programs, you will have to choose carefully to
avoid assembling your program for a location which may be occupied by some
other program. There are a few "holes“ in the memory map, discussed below,
where you can locate your machine language routine using this method. However,
if your program is large, you should probably not use MLGET to load your
program.

The second method is extremely powerful. This is to create a relocatable
machine language PROMAL module, which can be executed by simply typing its name
from the EXECUTIVE, or can be loaded under program control with the LOAD
procedure. PROMAL 2.0 provides a utility program on the PROMAL diskette called
RELOCATE, which has the ability to turn any assembly program into a relocatable
program. Your program does not have to be address-independent. It can be used
with virtually any assembler. If you don’t have an assembler, one is provided
that runs under PROMAL, on Volume 1 of the PROMAL Public Domain User Library
(available from SMA). By using RELOCATE, you can have a machine language
module which will run properly at any address which the PROMAL loader can find
available for it. This technique is described at the end of this section.

The biggest problem of a standard machine language routine is where to put
it. As you know, PROMAL programs are relocatable, and the EXECUTIVE
automatically finds a spot for them in memory. Unfortunately, 6502 machine
language programs are not generally relocatable, and will only work properly at
the address they were assembled for. Although the PROMAL EXECUTIVE can load a
non-relocatable machine language program into memory with the GET command, it
won‘t keep track of where it is, and may allocate a PROMAL program (or
variables) right over the top of it if care is not taken.

If your machine language routine is short, one best place to put it is at
$0334 to $03FF. This area is available on both the Apple II and Commodore 64.
However, the optional PROMAL HIRES GRAPHICS PACKAGE uses this area for global
variables, so you should avoid using this area if you will be using hi-res
graphics in your application. If your routine(s) take more than 200 bytes,
you'll have to find another spot. If you are certain your program won’t need

Copyright (C) 1986 SMA Inc. Rev. C

NON'BELOCATABLE MACHINE LANGUAGE BOUTINES USING MLGET

WRITING MACHINE LANGUAGE EXTERNAL PROCEDURES AND FUNCTIONS

Systems Management Associates, Inc. MACHINE LANGUAGE

—Il-- -I—I—Il—-—Il- I

-———— ———-I— - -£-:‘-_I-__1_________

-2TI= _— -_-__'__'__':_-..4:r333-.Eli—_E:

-—-l-'I-'l-""" '_'I-

to do REAL operations, you can use the 256 bytes at $0800 for your machine
language program (this area is used for allocating local REAL variables and
performing REAL arithmetic).

For large machine language routines, you may want to pick a spot in the
"unused" area shown by the EXECUTIVE MAP command. Be aware that this area
expands and contracts as programs are loaded or unloaded, and that the EDITOR
or COMPILER will use this area for buffer space. Therefore you will have to
reload your machine language code from disk after you use the EDITOR or
COMPILER. PROMAL allocates programs from the bottom of available memory up,
and allocates global variables (for arrays and global REAL variables) from the
top of available memory down. To find a safe spot, first UNLOAD any un-needed
programs. Then GET your PROMAL program into memory. Then use the MAP command
to determine where the "available space" starts. Round this address up to a
nice round number to leave room for future growth of your program, and use this
for the address of your machine language program segment. For example, if the
free space goes from $5FOO to $7A00, you might want to pick $6000 as the
starting address of your M/L code. Appendix G gives a PROMAL memory map.

Once have decided where to assemble your program, the next problem is
where to put your "zero page" variables. The only zero page locations you
can use with complete safety are:

$02 - $10 (not used by PROMAL, but used by BASIC)
$FB — $FE (the same space that is free for BASIC)

soo — $0E, $4A— $41), $30 - $FF

As you already know if you’ve done much 6502 machine language programming, the
Commodore 64 system software uses up almost all of page 0. Unfortunately, this
situation is not greatly improved with PROMAL.However, if you just need some
scratch space for pointers and the like, you can use the following locations:

$16 - $19 ; Used for scratch by PROMAL
$36 - $41 ; Used for scratch by the LIBRARY routines
$57 - $66 ; Used only for REAL arithmetic - free if no REALs needed

Once you have settled on where to put your program and zero-page variables,
the hard part is over. Calling your machine language routine from a PROMAL
program is very easy. All you have to do is declare the name of the routine
and where its entry point is, for example:

EXT ASM PROC MYROUTINE AT $0334
EXT ASM FUNC BYTE TESTIT AT $0337

Copyright (C) 1986 SMA Inc. Rev. C

Scratch zero page locations for Commodore 64

Available zero page for Apple II

Available zero page for Commodore 64

you

MACHINE LANGUAGE Systems Management Associates, Inc.

Here is the companion PROMAL declaration and a sample call:

EXT ASM PROC MYPROC AT $0334

MYPROC X+1 ; pass X+1 to m/l routine

These declarations define two external assembly language (ASM) routines located
at $0334 and $0337. It is not necessary to define what arguments (if any) will
be passed to these routines. The compiler will accept any number of arguments
when calling an EXT ASM routine.

PROMAL calls EXT ASM routines with a 6502 JSR instruction. If your routine
is declared as a PROC and doesn’t require any arguments, you can simply write
it like any 6502 subroutine and just return when you are done via an RTS. More
often, though, you will want to receive one or more arguments from the calling
PROMAL routine.

PROMAL passes arguments on the hardware stack. All arguments are passed
as 2-byte quantities, even if the argument evaluates as type BYTE (the high
order byte will be 0 in this case). Passing REAL arguments to assembly
language routines is not recommended. On entry to your routine, the Y register
will contain the number of arguments passed on the stack. These arguments were
pushed on the stack before the JSR, so they are logically "underneath" the
return address. Generally you will want to pop off the return address and save
it, then pull off the arguments (the last argument will be popped first) and
save them in variables of your own. When the routine is done, you should push
the saved return address back on the stack and return. You don’t have to
preserve any registers.

The following example shows how to write an assembly-language procedure
with one argument expected to be passed from the PROMAL calling program:

Sample assembly language procedure MYPROC with 1 argument..

*=$0334 ; in unused piece of memory.
MYPROC PLA

STA RA ; save return addr. low.
PLA
STA RA+1 ; & hi byte
PLA
STA ARGl+l save passed argument hi
PLA
STA ARGl ; & low byte

Operate on ARGl as desired here...then.

LDA RA+1
PEA put return addr back on stack
LDA RA
PHA
RTS return to caller

RA *=*+2 save for return address
ARGl *=*=2

Copyright (C) 1986 SHA Inc. Rev. C

.END

1-8 Systems Ease-em: Associates, Inc. MACHINE LANGUAGE

If your machine language subroutine is to be a function, it should return
its value on the top of the stack. If it is type BYTE, it should only return a
byte on the stack, otherwise it should return two bytes.

To assemble your routine you can use any Assembler or Machine Language
MONITOR which produces a standard Commodore machine language PRG file or Apple
II BSAVE type file respectively as output. An assembler which runs under
PROMAL is available in the PROMAL public domain library. Some of the small
Machine Language Monitors such as the version of GéhMON which loads at $8000
can be run directly from PROMAL for the Commodore 64. Others will have to be
run from BASIC. Once you have saved your object file on disk, you can load it
into memory from the PROMAL EXECUTIVE with the GET command or by using the
MLGET function. When using GET, enclose the name of the file in quotes to
indicate that it is a machine language file instead of a PROMAL program. Also
be careful to type the name exactly as it is stored in the directory (usually
with upper case letters). For example:

GET "MYPROC"

will load the machine language file "MYPROG" into memory at whatever address it
was saved. Note that the MAP command will not show the location where this
program is loaded. Alternatively, your application can load the machine
language file itself, using the built-in function MLGET, described in below.
This is the preferred method.

Let us now look at a slightly more complex example. This example illus-
trates a machine language function with one required argument of type WORD and
one optional argument of type BYTE, defaulting to ’’if not specified:

; Assembly Language function MYFUNC (WORD [,BYTE])
*=$0334

MYFUNC PLA
STA RA ; save return address
PLA
STA RA+1
LDA ; default if only 1 arg specified
CPY
BNE MYFUNCZ ; branch if only 1 arg specified
PLA ; else discard dummy hi byte
PLA ; get byte argument specified

MYFUNCZ STA ARGZ ; save default or specified 2nd arg
PLA
STA ARG1+1 ; save hi byte of arg l
PLA
STA ARGl ; save low byte of arg l

; operate on arguments as desired here...then...
PHA push result to be returned to caller
LDA RA+1
PHA ; push return address
LDA RA
PHA
RTS return to caller

Copyright (C) 1986 SKA Inc. Rev. C

#’ ’
#2

MACHINE LANGUAGE Systems Management Associates, Inc.

II- |___|_ h..—

—-——h——_ fl—————-——_—
-_ I I.“ I;
In. I ——L——

I—-— ——— -——-— _—

I-‘EI-qi-3. .I'I'L'ul'"
_ - -__ .__- ..._— ----L.--;.J: _-_-__— _a- . . _-_.__

-._-I:- ._ I'-.__ -______:__.

EXT ASM FUNC BYTE MYFUNC AT $0334
WORD WHERE
BYTE CHAR

CHAR = MYFUNC(WHERE) ; call with default for 2nd arg

IF MYFUNC(WHERE-l,'A’) , call with 2nd arg specified

You may call LIBRARY routines from your machine-language subroutines (but
you may not call subroutines written in PROMAL). The address of the desired
routine can be obtained from the listing of the LIBRARY.S file in Appendix Q of
this manual. Pass your arguments on the stack, remembering that passed
arguments are always 2 bytes each. Don't forget to set the Y register to the
number of arguments you are passing. The following example shows how to
print a message on the screen from an assembly language routine by calling a
library routine:

PUT $0F15 Address of PUT routine (from Library)

; Print an error message and then the character now in the X reg, then CR.

LDA #(ERRMSG
PHA
LDA #>ERRMSG

Push the address of the string to print

PHA ; then hi byte
TXA ; push the character to print after the msg.
PHA
LDA
PHA ; push dummy hi byte (must be for char.)
LDA #SOD ; ASCII CR is third argument
PHA
LDA
PHA another 0 for the hi byte
LDY we’re passing 3 arguments
JSR PUT ; display all three arguments

ERRMSG DB ’Illegal character: ’,0 ;0-byte terminates the string

From inspection of the program fragment above, you may have surmised how
the PROMAL LIBRARY routine PUT tells the difference between a single character
argument and a string argument. If the argument is less than 256 (high byte is
0), then it is a single character. If the argument is greater than 256, then
it must be the address of the string to print.

Copyright (C) 1986 SMA Inc. Rev. C

#0

(low)

CALLING LIBRARY ROUTINES FROM MACHINE LANGUAGE PROGRAMS

Here is the companion PROMAL declaration and sample calls:

I—lO Systems Management Associates, Inc. MACHINE LANGUAGE

ni.—-—I-'—'—|- -l

1——-l_--I_

_J._I..-.I.l-

awash—“*-
I£r-- -IfI—--—|—

.I—I-I-Il-_----

...:..=:fl,_—'_'r-- -I- —“rd—'—

if"'--'3iii-:37-

LOADING NON-RELOCAIABLE MACHINE LANGUAGE PROGRAMS FROM WITHIN A PROGRAM

Function MLGET can be used to load a stanndard Apple or Commodore format
machine language program, such as would be generated by commercial assemblers.
You can specify whether you want the program loaded at the same location it was
saved at, or at another location. Function MLGET is described in the LIBRARY
MANUAL.

MAKING YOUR ASSEMBLY PROGRAMS RELOCAIABLE

The RELOCATE program supplied on the PROMAL disk is capable of converting
virtually any assembly language program into a relocatable PROMAL module. The
advantages of doing this instead of simply using MLGET to load a standard,
non-relocatable program are:

1. The program can be executed by simply typing its name from the PROMAL
executive, just like any other PROMAL program.

2. The PROMAL loader will find a free location in memory to run the program
automatically.

3. The program can be loaded under program control using the LOADer.

4. You can import variables and subroutines from your machine language
package to PROMAL programs which call it.

This makes using RELOCATE the most desirable method of preparing large
assembly language modules for use with PROMAL.

To use RELOCATE, follow these steps:

1. Prepare your assembly language source program in the usual way,
following the interfacing guidelines in the preceding section, and the
organizational guidelines suggested in the following section.

2. Assemble your program twice, once with the origin set at some arbitrary
page boundary (greater than $0200), and once with the origin set exactly $0100
bytes higher in memory. Save both resulting object programs. You may use
virtually any assembler you wish. A public domain PROMAL assembler is
available from SMA. The program should consist of a single, contiguous block
of code. Your zero-page variables will not be relocatable, and must be
assigned locations as described in the foregoing section.

3. Execute RELOCATE from the PROMAL EXECUTIVE by typing:

RELOCATE Object 0bject0100 Objmodule

where Object and ObjectOlOO are the names of the two machine language object
files saved from the previous step, and Objmodule is the name of the desired
PROMAL module to be generated as output. No default extensions are assumed for
the first two file names, which are normally "PRG" type files for the Commodore
and "BIN" type files for the Apple. The last filename will have a .C extension
by default. If you want Objmodule to be an overlay instead of a program (see
the section on the PROMAL loader for more information), you can specify an
optional fourth argument as the single character 0 (the letter "oh").

Copyright (C) 1986 SMA Inc. Rev. C

MACHINE LANGUAGE Systems Wilt Associates, Inc. I—ll

4. When RELOCATE finishes, your program is ready to run or load.

Your assembly language package can have multiple procedures and functions in
it which can be called from your PROMAL program, complete with passed
arguments. In order for the LOADer to be able to link up your PROMAL program
correctly with your finished relocatable machine language package, we suggest
you follow some simple conventions, which we will illustrate in a skeletal
example program.

To organize your program, decide which routines you will want to call from
your PROMAL program. These should be entered by a jump table at the very start
of your program. These JMPs should be followed immediately by any non-zero
page variables which you wish to make available to the calling PROMAL program
(often none will be needed). For example, if you want to be able to call three
routines, and have one variable which can be accessed by other PROMAL programs:

TEMP $00FE ; Temp O-page variable used by this program

*=$1000 ; Dummy origin (make it $1100 for 2nd assembly)
FUNCA JMP FUNCAI ; Function exported to PROMAL program
PROCB JMP PROCBl Procedures exported to PROMAL program
PROCC JMP PROCCl

ANSPTR Variable exported to PROMAL program

PLA
STA RA Save return address
... etc.
RTS

PROCBl PLA
STA RA

RTS

PROCCI PLA
STA RA

RTS
END

Assume that this program has assembled successfully. Now you want to export
the definitions of your routines and your variable ANSPTR to the PROMAL
program(s) which will be using your machine language package. Since the
assembler can’t generate an export file automatically, you can generate a
"fake" export file by hand using the PROMAL EDITor. Assuming our sample
package will be called MLPKG, you could generate this text file with the file
name MLPKG.E:

Copyright (C) 1986 SMA Inc. Rev. C

FUNCAl

ORGANIZING YOUR RELOCATABLE PROGRAM

1-12 Systems Management Associates, Inc. MACHINE LANGUAGE

r-

IMPORT MLPKG ;10/16/85
EXT ASM FUNC FUNCA AT $0000
EXT ASM PROC PROCB AT $0003
EXT ASM PROC PROCF AT $0006
EXT WORD ANSPTR AT $0009

Be sure to start the IMPORT line exactly in column 1 and to observe the
indentation for all other lines. The addresses shown after "AT" in each of the
lines should be relative to the start of your machine language program (each
JMP instruction is 3 bytes long). If you use the jump table, you won’t have to
change this export file even if you make changes in the body of your machine
language program later.

You can now INCLUDE MLPKG.E in any PROMAL programs that will call the
machine language package, and compile them. Your PROMAL program should also
have a "bootstrap" program to load the machine language package, as discussed
in the section on the PROMAL LOADer. For example:

PROGRAM BOOTPROG
INCLUDE LIBRARY
INCLUDE PROSYS

LOAD "MLPKG", LDNOGO
LOAD "CALLSML"

END

PROGRAM CALLSML main module, calls MLPKG
INCLUDE LIBRARY
INCLUDE MLPKG.E Export file from M/L package

WORD MYVAR[100]
WORD

ANSPTRFMYVAR ; Using variable imported from MLPKG
IF FUNCA(23-MYVAR[I]) < 100 ; Calling M/L function
PROCB MYVAR[I+1], MYVAR[I+2] ; & M/L procedure

END

These two programs can then be separately compiled. The final step is to make
our machine language package relocatable:

RELOCATE OBJECT OBJECTIOO MLPKG.C

assuming OBJECT is the output file from assembling the program at $1000, and
OBJECTlOO is the object file resulting from assembling it at $1100.

To execute the program, type:

Copyright (C) 1986 SHA Inc. Rev. C

BOOTPROG

OWN

MACHINE LANGUAGE Systems Management Associates, Inc. 1—13

which will load the relocatable machine language module MLPKG into memory at
some available location, load the main PROMAL program CALLSML into memory above
it, link the function and procedure calls and variable references to the
machine language package, and execute the program.

The source code for RELOCATE is provided on a PROMAL diskette. It uses
conditional compilation for the Commodore and Apple II versions. You may
therefore modify it to meet your needs if you have an assembler which produces
object output files which are not compatible with RELOCATE.

The Commodore version assumes the object code files to be used as input to
RELOCATE will be standard Commodore object files of type PRG, such as are
generated by the BASIC SAVE command. This format consists of a word giving the
starting address, followed by a memory image of the object program.

The Apple II version assumes a standard PRODOS object file with a file type
of BIN, such as is generated with a BSAVE command. The Apple version of
RELOCATE is more complex because the information about the starting location of
the memory image is contained in the directory instead of the file itself. See
the PRODOS Reference Manual for details.

The format of the PROMAL relocatable object module which is generated as
output from RELOCATE is as follows:

FHEAD Header ID byte, set to $CE
1 FTYPE Module type, $01 for M/L prog, $05 for overlay.
2—3 FHCDBA Nominal code base address (ORG where assembled)
4-5 Not used, set to 0000.
6-7 FHCDSZ Code size in bytes of memory image. Do not include

this header or relocation table in count.
8-D Not used, set to O.
E-lO FHDATE Date of assembly, 1 byte each for day, month, year

(year-1900 really), in that order.
11 Reserved. Set to $04.
12-1D FHCOMD Program name followed by $00 terminator, as it

would appear on a PROGRAM line of a PROMAL program.
1E-1F Not used, set to 0000.

20-n The actual object code memory image. The size of
this field is given by FHCDSZ above.

n+1—n+2 Reloc. Table header, set to ’R’ followed by ’A’.
n+3-n+4 Count of number of bytes which follow.
n+5-end List of words of addresses relative to the start

of the memory image above, where relocations must
be made. For example, If the memory image was
assembled to start at $1000 and starts with a
JMP $1123 instruction, then the first entry in
the list would be $0002 (indicating the high byte
of the address portion of the JMP instruction will
need to be modified when the program is loaded).

Copyright (C) 1986 SKA Inc. Rev. C

Position Field Name Description

M/L

TECHNICAL NOTES ON RELOCATE

1-14 Syst-s Management Associates, Inc. MACHINE LANGUAGE

-- -—I-——- '-

f‘. ___-_.I_._ - I..
__:__-..—__.= I'.T_—_'|.

__—

.=='_—.___ _.I. l'

._ _.._ . -_._ -_-..-_-;..-. -_-__ -__E ____-=.'.-_llt- - I.

......—u —-I.-

The RELOCATE utility can accept a fourth argument of (the letter 0, not
zero), indicating that the output object file is an overlay instead of a
program (the SIZE command will display a type of in this case, for
Assembly Overlay).

Due to limitations imposed by the architecture of the 6502 processor, it is
not practical to write interrupt service routines in PROMAL. However, you may
write and use machine language service routines.

For the 64, your program should prepare for using interrupts as
follows:

1. Turn off interrupts.
2. Save the contents of the interrupt vector at location $0314-0315

in another variable.
3. Install the address of your service routine in $0314-0315.
4. Enable interrupts.

Your service routine will be entered from initial Kernal interrupt
processing via the vector at $0314. Your service routine may not use
any library routines, Kernal routines, or any other software. It must
preserve all the registers and the stack. If the interrupt is caused
by the 1/60th second timer, you must do a jump indirect through the
saved vector you extracted in step 2. Otherwise, you must restore the
registers already pushed by the Commodore Kernal and do an RTI.

Because of the heavy usage of interrupts made by the Kernal, we recommend
you avoid interrupts on the Commodore 64 unless absolutely essential.

For the Apple 11, you may freely use interrupts in the normal manner.
However, you may not call any Library routines in the service routine, because
they (and the underlying PRODOS system) are not re-entrant. You should observe
all the restrictions detailed in the Apple Reference manuals.

Correct operation of PROMAL with interrupt routines is entirely the
responsibility of the programmer.

Copyright (C) 1986 SEA Inc. Rev. C

"AOV"

MACHINE LANGUAGE Systems Minimal: Associates, Inc. 1-15

This page is intentionally left blank.

Copyright (C) 1986 SMA Inc. Rev. C

1-16 Systems Management Associates, Inc. MACHINE LANGUAGE

The PROMAL Language fully supports recursion. In fact, the PROMAL COMPILER
(which is a 2800 line PROMAL program) makes extensive use of recursion. To
make full use of recursion, it is sometimes necessary to call a Procedure or
Function before it is defined. This is permitted in PROMAL, as follows:

Prior to the first invocation of the routine to be forward referenced,
declare it as an external (but not ASM), for example:

EXT BYTE EXP Allow forward reference to Expression Parser
EXT PROC STATEMENT Ditto for Statement processing routine.

You may then have forward references to the routine, by calling it in
the normal manner, for example:

TYPE = EXP
STATEMENT ASSIGN, BYTETYPE

At the desired location, complete the normal declaration of the Procedure
Function, for example:

FUNC BYTE EXP

END

PROC STATEMENT
ARG WORD ASGNLOC
ARG BYTE RESULTTYPE

END

Additional calls to these routines may follow their definition in the
normal fashion, if desired. Note that declaring a forward reference in this
manner defeats the compiler’s argument count checking and also its checking for
undefined subroutines, so be careful.

NOTE: If you have the optional Developer’s disk, file XREF.S illustrates an
excellent example of the use recursion for searching a tree.

Copyright (C) 1986 SMA Inc. Rev. C

.) ...

APPENDIX J

RECURSION AND FORHARD REFERENCES

FORWARD REFERENCES Systems Maggenent Associates, Inc.

This is intentionally left blank

Copyright (C) 1986 SMA Inc. Rev. C

page

Systems Management Associates, Inc. FORWARD REFERENCES

APPENDIX K

REAL FUNCTION SUPPORT

Example

A PROMAL Diskette includes a file called REALFUNCS.S which contains the
complete source code for all of the following arithmetic functions:

Name Description

ATAN Arctangent (returns angle in radians) Y ATAN(X)
COS Trigonometric cosine (angle in radians) Y COS(X)
EXP Exponential (e to the X power) Y EXP(X)
LOG Natural logarithm (base e) Y LOG(X)
LOG10 Common logarithm (base 10) Y LOClO(X)
POWER Power (X to the Y power) Z POWER(X,Y)
SIN Trigonometric sine (angle in radians) Y SIN(X)
SQRT Square root Y SQRT(X)
TAN Trigonometric tangent (ang. in radians) Y TAN(X)

These functions all expect arguments of type REAL and return results of
type REAL. They are provided in PROMAL source form instead of as built-in
functions (as in BASIC) because:

1. Many programs do not need any of these functions. If your program
doesn’t need them, you do not have to have them in memory, which makes about
1.5 K bytes of additional memory available for things you do need.

2. If you do need these functions, you can simply put the statement

in your program, and they will be included in your compiled program (assuming
you have copied the REALFUNCS.S to your Working diskette used for
compilation). No other declarations are needed to use the functions.

3. If you only need one or two of the functions, you can use the Editor to
extract just the functions you need and insert them into your program. This
saves memory and decreases compilation time compared with including the entire
REALFUNCS.S file. Note, however, that some of the functions call other
functions internally. For example, SIN calls COS and LOG calls L062, so be
sure to c0py all needed routines.

4. You can examine and study how the source code works. The algorithms
used depend heavily on Hart, et a1, Computer Approximations, published by John
Wiley and Sons in 1968 and reprinted in 1978 with corrections. Cements in the
source code identify which algorithm was selected.

Copyright (c) 1986 SMA Inc. Rev. C

INCLUDE REALFUNCS

REAL FUNCTIONS Syst-s Management Associates, Inc.

BASIC users will find most of these functions familiar, except for POWER,
which replaces the BASIC operator """. The POWER function is defined only for
positive values of the first argument. All the functions are believed to give
better precision than Commodore or Applesoft BASIC, often as much as two
additional significant digits. Through normal range arguments, the functions
can be relied on for about 9.5 significant digits (slightly less for POWER).
Even though these functions provide greater precision and are written entirely
in PROMAL, they usually still execute faster than their BASIC counterparts,
which were implemented in hand-coded assembly language.

NOTE: PROMAL version 2.0 and earlier had function ABS in REALFUNCS.S.
Version 2.1 has ABS in the standard LIBRARY for improved convenience and
performance.

Also included on one of the PROMAL diskettes is a file called FIDOR.S. This
contains the PROMAL function FLOOR, which has the form:

Realvar

where X is a REAL value. FLOOR returns a REAL result which is equal to the
largest integer less than or equal to the REAL argument. For example:

INCLUDE FLOOR-S
REAL X

x FLOOR (100000.89) ; Returns looooo.o
X FLOOR (-3.8) :Returns -4.0

Copyright (C) 1986 SMA Inc. Rev. C

FLOOR (X)

K-Z Systems Management Associates, Inc. REAL FUNCTIONS

-"_—.h.__;._.' '.'—TJ——._'__—_':£14._—_'=.'-".'-_-'§ r-'. E:3-
'_'______-.....

.'.— :=.—_.—_=""''.l-|- -- —--————.—.r.I:||'.'rI-'. =——--—--—
-—_—.-..—_' L‘- —'— _-

._;—_—_—.-__—;11.;"_""—.—

rfii .—_-.I.'==:__"'_-'"
'__ "IT."=_—_-:—_—_=-
nfi ... -'-|'.-.-—-__

APPENDIX L

COMPATIBILITY ISSUES

One of the goals of the designers of PROMAL was to achieve a high degree
of compatibility for PROMAL source programs on different kinds of computers
while at the same time allowing users the freedom to take advantage of the
special features of each supported computer. Obviously this entails some
compromises. To achieve 100 percent compatibility, you can only support the
"lowest common denominator" between machines. Clearly this is not a
satisfactory approach. Instead, a standard Library of functions was developed,
which is kept as similar as possible on all machines, but with additional
system-dependent functions also provided in additional libraries.

This section describes the major differences between the Apple II/Commodore
64 versions of PROMAL (hereafter referred to jointly as "6502 PROMAL") and the
IBM PC and compatibles version (hereafter referred to as "IBM PROMAL"). The
information is oriented towards the software developer wishing to "port" an
existing 6502 program to the IBM, but is also useful for going from the IBM to
the 6502.

MAJOR DIFFERENCES BETWEEN 6502 AND IN!VERSIONS 0F PROMAL

1. There is no EXECUTIVE in IBM PROMAL. 6502 PROMAL includes an EXECUTIVE
program which is a command shell similar to DOS on the IBM PC. There is no
EXECUTIVE in the IBM version because the DOS shell provides these functions.
Users of 6502 PROMAL should have little difficulty adjusting to DOS, since
the EXECUTIVE and DOS are fairly similar.

2. IBM PROMAL does not support multiple programs in memory at once, since DOS
does not support it. This generally presents no problem.

3. IBM PROMAL file names are limited to 8 characters plus a three character
extension, because this is the DOS standard. IBM PROMAL supports full DOS path
names.

4. IBM text files (including PROMAL source files) have lines terminated by CR,
LP pairs, whereas 6502 PROMAL uses only CR terminators, in keeping with the
conventions of the respective computers. This may cause some initial problems
when porting source files from one machine to the other. When moving source
files from 6502 systems to the IBM, you will need to write a small "filter"
program to insert a linefeed ($OA) after each CR ($0D). More significantly, if
your 6502 program uses statements such as PUT CR,... to generate an end-line,
you will need to edit your source file to change this to PUT NL.... Using NL is
preferred since it is portable between either machine; in the 6502 Library, NL
is defined as a single character, CR. In the IBM Library, it is defined as the
string CR,LF. When using a statement such as OUTPUT '#C...', you do not have
to change the #c since this is defined as the appropriate newline sequence on
either machine.

5. In 6502 PROMAL, the file handle returned by OPEN always points to the name
of the file. This is not true for IBM PROMAL, because standard DOS file
handles are returned, which are small integers, not addresses. This is
normally of no consequence. However, if your program depended on the file

Copyright (C) 1986 SMA Inc. Rev. C

COMPATIBILITY Systems Haggai-cut Associates, Inc.

handle pointing to the name you will to change it.

6. IBM PROMAL does not support the W, L, S, or K devices. However, you can
open a file named "W". If you manipulate WPTR, WEOF, etc. directly in your
program, you will need to change this.

7. I-O redirection operates somewhat differently in IBM PROMAL. DOS provides
the I—0 redirection, not PROMAL. The REDIRECT procedure is not supported. I—O
redirection, when enabled using the > operator on the DOS command line, affects
all screen output, not just output to the STDOUT handle. Also, note that GETLP
(STDIN,...) does not support the PROMAL line editing features from the
keyboard, but only the DOS line editing keys.

8. The LOAD procedure is not supported in the present version 1.9 of IBM
PROMAL. In most cases this should not pose a significant hardship since the
IBM has a much larger memory space available for running your program, so
programs needing overlays in the 6502 version will not need them in the IBM
version. It is possible to have one PROMAL program chain to another program
using the DOSCALL procedure.

9. Naturally, any machine language calls, memory mapped registers, etc. used
in your programs will not be portable.

10. Applications using the T device may need to be altered for use on the IBM
PC. The TMODE utility is not supported; the DOS MODE command replaces this
program. IBM PROMAL supports interrupt driven serial I/O.

11. If your program uses special keys (such as function keys), you will need
to adjust the key codes as specified in Appendix B. Function key string
substitution is still supported in the IBM version, but not from the DOS shell.

12. If your program uses embedded control keys to select reverse video mode,
you will have to change this since the IBM does not support a control sequence
for reverse video (unless you use ANSI.SYS as described in the DOS
documentation). Functions are provided for setting video attributes.

13. The DIR function displays file names in a different format on the IBM PC,
consistent with the DOS DIR command (/W option).

14. The line editing keys for use with GETL, EDLINE, and INLINE are somewhat
different for the IBM version, consistent with normal key conventions for the
IBM.

15. CARG[O] not defined in the IBM version.

16. OPEN for IBM PROMAL does not have a default file extension (it is
the 6502 version).

17. The RENAME function cannot have wildcards in the IBM version. Complete
path names are supported, and you can rename into a different directory.

18. IBM PROMAL 2.1 reserves the following additional key words: LONG, STRUC,
UNION, SIZEOF, SEARCHLIB.

Copyright (C) 1986 SEA Inc.

.C on

GETLF

need

L-Z Systems Management Associates, Inc. COMPATIBILITY

1}: ___—___.-_F-_«' —-:= —.==_'==—=—=:—-— _- ---_—

g;aw.-_—— -—-—-—— -
r5'_—"_"E".".'=.'_=--=E=_=
-_T::=I:_"_-: 55::
I.|=r=::_1=lru*

64

PROMAL on the Commodore 64 treats all files as Commodore sequential (SEQ)
type files, including programs, text and data. For many database and business
applications, another type of file structure may be more suitable for rapid
access to data. The Commodore 1541 disk drive has an undocumented but fairly
widely—known ability to create and access files by "relative records". Your
local computer store can probably provide books with information on using
relative records with BASIC, such as The Anatomy of the 1541 Disk Drive, by
Abacus Software.

The PROMAL System Diskette contains a file called REL_PILE.S which provides
a set of PROMAL routines for using relative files from your program. A totally
complete discussion of relative files is beyond the scope of this manual, but
here is a brief description.

A relative file is organized into a number of fixed-length records. The
size of all records in the file is the same, and is established when the file
is opened. The record size can be from 1 to 254 characters. Records of 20 to
100 characters or so are typically used. For a database application, each
record might be subdivided into fixed—length fields; for example, a customer
name field, address field, etc. Once you have opened the relative file on
disk, you initialize the file. Initializing the file allocates space on the
disk for the number of records you specify and sets each record to "empty".

Once you have opened and initialized the file, you may write and read
records by specifying the relative record number desired. Typically this
record number corresponds to a sequential customer number or some other "key"
number by which the file is to be accessed. The first record on the file is
number 1 (not 0), the last record has a relative record number equal to the
highest record number specified at initialization.

The REL_FILE.S file has the source for routines to open, initialize, read,
write and delete relative files. Due to internal format differences, you may
not read or write relative files as ordinary sequential files, or by using the
Executive or Editor (exception: you may DELETE or RENAME relative files). In
particular, if you try to TYPE or COPY a relative file from the Executive,
will get a "FILE NOT FOUND" error because the type of the file is not
sequential. Do not use DYNODISK with Relative files.

To use the relative file routines, put the following statement in your
program before the first reference to the routines:

The following subroutines are provided:

Copyright (c) 1986 SEA Inc. Rev. C

INCLUDE m_1rm:s

you

APPENDIX 11

RELATIVE FILE SUPPORT RDDTINES FOE CMDORE

C-64 RELATIVE FILES Systems Maggi-eat Associates, Inc.

Systems Management Associates, Inc. C-64 RELATIVE FILES

OPEN RELATIVE FILE

USAGE: REL_9PEN Filename, Recsize

Procedure REL_OPEN opens a relative record file. Filenane is a string
containing the desired file name. This may be any legal Commodore filename,
but we suggest you use a legal PROMAL file name with a ".R" extension. Recsize
is an argument of type BYTE specifying the size of each record, which may be 1
to 254. It is the programmer’s responsibility to insure that the file is
opened with the same record size every time.

In planning your record size, remember that the record size should be 1
greater than the actual maximum number of characters you plan to use in the
record, to allow for the Carriage Return (CR) terminator which will be appended
automatically to each record on disk. The 1541 drive only allows one relative
file to be open at a time. REL OPEN must be called prior to any other relative
file routines. _
EXAMPLE:

CON RECSIZE=81 Up to 80 chars in a record
DATA BYTE FILE="INVENTORY.R" Filename to be opened

REILOPEN FILE,RECSIZE ; Open relative file for I/O

INITIALIZE RELATIVE FILE

USAGE: REL_INIT Numrecs

Procedure REL_INIT initializes a previously opened relative record file and
specifies the maximum number of records to be allocated. Each record is
initialized to "empty" (a null string). Nulrecs (type WORD) is the desired
maximum number of records. If this number is large, the initialization could
take several minutes. It is only necessary to initialize a relative file when
it is first created (after opening it) or when enlarging the maximum number of
allowable records. It is not necessary (or desirable) to initialize it each
time you open it. To enlarge the file for additional records, you can call
REL IRIT again with Hunrecs specifying the new maximum. Records previously
wriEten will not be affected.

EXAMPLE:

CON RECSIZE=81 ; Up to 80 chars in a record
CON NUMRECS=200
DATA BYTE FILE="INVENTORY.R"

REL_OPEN FILE,RECSIZE open relative file
REL_INIT NUMRECS initialize file null records

Copyright (C) 1986 SEA Inc. Rev. C

...

mac REL_INIT

......

mac m_om

c—GA RELATIVE FILES Systems Management Associates, Inc.

not: “1.33111: WRITE RECORD T0 RELATIVE FILE

USAGE: REL_FRITE Recnum, Record

Procedure REL_WRITE is used to write a particular record in an open and
initialized relative file. Recnun is the desired relative record number (type
WORD), and Record is a string containing the text of the desired record. The
string does not have to include a carriage return; one will be appended when
the record is written to disk. The record written must not be longer than the
record size which was specified when the file was open.

If the record was previously written, the new record replaces it in its
entirety, even if the new record is shorter than the record it replaces. Recnun
must be between 1 and the value specified for Nu-recs when REL_INIT was called,
inclusive. The string written should not contain a byte of $FF (255). Natural—
ly it cannot contain any $00 bytes either since this is the string terminator
in PROMAL.

EXAMPLE:
CON RECSIZE=SO ; Up to 49 chars in a record
CON NUMRECS=3OO
BYTE LINE [81]
BYTE INDEX
WORD RECNUM
DATA BYTE FILE="MYDATA.R"

REILOPEN FILE,RECSIZE

PUT NL,"WRITE WHAT RECORD NUMBER ?
GETL LINE
INDEX=STRVAL(LINE,#RECNUM)
PUT NL,"CONTENT OF RECORD 7"
GETL LINE
REL_WRITE RECNUM, LINE

The program fragment above prompts for entry of a record number and a line of
text to be the desired record. It then writes the record specified.

FROG REL_EEAD READ RECORD FROM RELATIVE FILE

USAGE: REL_DEAD Recnum, #Buffer

Procedure REL_READ reads a specified record from an open relative record
file and copies it to a specified buffer. Recnul is the desired record number
(type WORD), between 1 and the value of Nulrecs specified when the file was
initialized. #Buffer is the address of the desired buffer to hold the record,
which should be at least as large as the record size specified when the file
was opened. The CR terminating the record on disk is not returned in the
buffer; it is replaced with a $00 byte so the buffer can be treated as a
standard PROMAL string. A record which has never been written will return

Copyright (c) 1986 SHA Inc. Rev. C

null string without error.

EXAMPLE:

CON RECSIZE=50 Up to 49 chars in a record
CON NUMRECS=3OO
BYTE LINE[81]
BYTE INDEX
WORD RECNUM
DATA BYTE FILE="MYDATA.R"

REILpPEN FILE,RECSIZE

PUT NL,"READ WHAT RECORD NUMBER
GETL LINE
INDEX=STRVAL(LINE,#RECNUM)
REL READ RECNUM, LINE
PUT—LINE ,NL

PROC REL_DELETE

The program fragment above prompts for a record number and displays it on the
screen, followed by a carriage return.

DELETE RELATIVE FILE

USAGE: REL_DELETE Filename

Procedure REL_DELETE is used to delete an entire relative record file. The
file should be closed when REL_DELETE is called. All records will be discarded
and the file space reclaimed for future use on the disk. Filenaue is a string
containing the name of the file. The message

"01, FILES SCRATCHED, Ol, 00"

will be displayed on the screen. This is not an error.

EXAMPLE:

Copyright (C) 1986 SEA Inc. Rev. C

REL_DELETE "MYDATA.R"

M—4 Systems Management Associates, Inc. C-64 RELATIVE FILES

C—64 RELATIVE FILES Systems Managenent Associates, Inc. Mr5

moc REL_CLOSE

USAGE: REL_CLOSE

Procedure REL CLOSE closes the previously-opened relative record file. No
error occurs if the file is not open. This procedure should be called before
exiting from any program which has opened a relative file, or when done with
the file. Note that it is normal for the red light on the 1541 drive to be on
the entire time a file is open. Because it is important to properly close the
file, it is suggested that CTRL-STOP not be used to exit from a program which
has opened a relative file.

EXAMPLE:

REL_OPEN "MYDATA",4O
REL_CLOSE

Note that if you INCLUDE both RS_?32 and REE_F1LES in single program, you
will get some duplicate identifier errors when you compile, because both
packages use and declare some of the same Kernal entry points. To correct this
situation, simply copy whichever of these files is second in your program to
another file, and edit it to delete the duplicate declarations.

The REL_PILE package requires version 1.1 or later of PROMAL.

RELDBMD PROGRAM

The PROMAL System disk contains a file called RELDEMO.S. This file is a
simple demonstration program for relative files using REL_PILE.S support. It
opens a relative file called "TEST_REL.R" for up to 20 records of 40 characters
each, and prompts you to read or write selected records. The first time you
run RELDEMO, you should select "initialize" from the menu before reading or
writing records. A menu option is provided to delete the entire file if you no
longer want it on your disk.

You can study the RELDEMO.S program for more information about using
relative files. Since the REL_FILE.S support package is provided in PROMAL
source form, you may also wish to study it to see how to use PROMAL to inter-
face to the Commodore Kernal routines. Advanced users may even wish to use the
same techniques to write their own direct-access disk routines. If you do
decide to write your own disk-support routines in PROMAL, please note the
following:

1. The PROMAL nucleus always has channel 15 open to the disk command/error
channel. The routine REL_CHECK in REL_PILE.S provides a way to read the error
channel.

2. PROMAL allocates C-64 channels in ascending order, with the secondary
address the same as the channel number. You should pick "high" channels and
secondary addresses (9 or 10 recommended) to keep out of PROMAL's way.

Copyright (C) 1986 SMA Inc. Rev. C

E0

CLOSE RELATIVE FILE

Copyright (C) 1986 SMA Inc. Rev. C

This page is intentionally blank

H—6 Systems Management Associates, Inc. (3-64 RELATIVE FILES

-- --If-_I- F-

:I=EI_:_£I_5"“—
’fi

'—— '. '.T_-—_T'__
='= ._.£.:I'_. I.-_ 1rI———

:"rTEEEiL'I-‘I:_'—.'r.-'-'-
:-LEE—l-l

IIIII|
1 :-

—'-u— —————I--I-
'-_'_—:—.;=.-:.':_'-.':.|.'!|-'

APPENDIX N

OPERATING SYSTEM NOTES

PROMAL Version 2.0 has full support for two disk drives. These can be
either two 1541-type drives (one as device 8 and one as device 9), or dual
diskette drives such as the SD—Z by Micro Systems Development (MSD), with drive
numbers 0 and 1 on Commodore device 8. The default drive is drive 0. Files in
drive 1 are designated by a "1:" prefix as part of the file name.

If a drive number is not specified as a prefix, the default drive is always
drive 0 (device 8). A prefix of "1:" will access drive 1 (device 9). You
always "boot up" PROMAL from drive 0. When compiling programs with INCLUDE
files, the INCLUDE file name may have a drive prefix.

As shipped from SMA, PROMAL is set up to use one 1541 drive. If you
wish to use a dual drive MSD system, you should disable DYNODISK permanently
and set the device numbers for both drives to 8. This should be done from
BASIC as follows:

LOAD "PROMAL",8
POKE 3553,8 :rem makes logical drive device 8, not 9
FORE 3554,128 :rem defeats DYNODISK permanently

Insert a formatted disk in drive and type:

SAVE "PROMAL“,8,1

Then put the PROMAL diskette back in and type:

After the system is booted up, copy the rest of the files to your new disk.
You can use a commercial copier to do this if you wish, or use the
command.

On the Commodore 64, you can read the "jiffy" clock using this function, TIME,
which returns the clock reading in “jiffies” (1 jiffy l/60th of second) as
a REAL number:

EXT BYTE THI AT $AO
EXT BYTE TMED AT $Al
EXT BYTE TLO AT $A2
FUNC REAL TIME
BEGIN
RETURN TMED:+<<8 + TLO +65536.*THI
END

Copyright (C) 1986 SMA Inc. Rev. C

ELAPSED TIME FUNCTION

RUN

COMMODORE 64

SYSTEM NOTES Systems Management Associates, Inc. N-l

PROMAL uses the Apple ProDOS operating system. Users who are accustomed to
operating under DOS 3.3 will find a utility program on the ProDOS Utilities
Diskette (available at your Apple Dealer) which can convert your existing text
and data files to ProDOS format so that you may use them with PROMAL.

Some non-PROMAL programs for the Apple produce text files with the high-
order bit of each character set. These files may be converted to standard
ASCII files (as expected by the PROMAL editor and other PROMAL programs) by
using the CLEARBIT7 utility program on the PROMAL System diskette. The command
syntax is:*

CLEARBIT7 Oldfile Newfile

where Oldfile is the name of the file to be corrected and Newfile is the
desired name for the corrected file to be written. The CLEARBIT7 utility also
truncates any lines longer than 125 characters, so that the resulting Newfile
will be acceptable to the PROMAL EDITOR.

SPECIAL PRODOS FUNCTIONS

The file PRODOSCALLS.S contains a source program fragment suitable for
calling special ProDOS functions (such as testing or setting file attributes)
which are not covered by built in LIBRARY routines. The ProDOS Technical
Reference Manual contains all the neccessary details.

Copyright (C) 1986 SMA Inc. Rev. C

APPLE II

Systems Management Associates, Inc. SYSTEM NOTES

————— I. -"T _———-— -—— _————--—
I —:- — ——-———— '- fl' —————- — __-—————I -

0

FORMATTING, BACKING UP, 8 MAKING WORKING DISRS

One of the first things you should do with your all your PROMAL distribution
disks is to make at least one backup copy. Be sure to read the License
agreement before opening your sealed diskette. It is important to make
a copy of your diskettes and only work with the copy, so that in the event that
any files are accidentally deleted, you can always get a new copy from the
original disk. Note that only the Demo disk is bootable. You may make backup
copies for your own personal use subject to the license agreement. Making
copies other than as permitted by the license agreement is a violation of
Copyright Law and is a crime.

For the Apple II, you may back up your PROMAL diskettes using the ProDOS
Utility Diskette which came with your Apple IIe or IIc (available from your
Apple dealer). You should also use this program to format new blank diskettes
before using them with PROMAL. It is a good idea to write the volume name of
every diskette on the label using a soft marker. A11 disks should have unique
volume names. To make a "working disk" which can boot up PROMAL and do
development, use the ProDOS file copier or the PROMAL COPY or EXTCOPY commands
to copy the following files from the PROMAL disk to your newly-formatted
diskette:

PRODOS
PROMAL-SYSTEM
EDIT-C
EXECUTIVE-C
COMPILE.C ; Either Demo compiler or full
LIBRARY.S
EXTDIR.C
COMPERRMSG.T
EXTCOPY.C If desired

All the files above except the full compiler are on the Demo disk.
COMPILE.C, EXTDIR.C, COMPERRMSG.T and EXTCOPY.C are not necessary to boot
up the system, but you will usually want to have them on the disk if you will
be developing any programs. Once your system is booted up, you can develop
programs with a disk which only has COMPILE.C and COMPERRMSG.T (and perhaps
EXTDIR.C) on it, to leave more room for your source and object programs.
Remember to issue a PREFIX * command when changing disks. You may wish to copy
other files such as PROSYS.S or REALFUNCS.S on an as-needed basis.

If you have a [RAM disk, you may want to set up a BOOTSCRIPT.J file to copy
your working files to 0:. EXTCOPY is convenient for doing this.

It is a good practice to keep at least one formatted, blank diskette
available at all times, with the Volume name clearly marked on the label. This
will come in handy the first time you type in a big program with the Editor
only to discover there’s no room left on your working disk to save it! To
extricate yourself, save to W and exit to the EXECUTIVE. Then use PREFIX * to
select your blank disk and COPY W Filename to save your file on disk.

Copyright (C) 1986 SMA Inc. Rev. C

Apple II

APPENDIX

BACKUP DISKS Systems Using Associates, Inc.

For the Commodore 64, the DISKETTE utility is a PROMAL program which
provides the following disk and file maintenance services:

1. Duplicate an entire diskette using a single 1541/1571 disk drive, two
1541/1571 drives, or an MSD dual disk drive.

2. Format ("New") a diskette.
3. Copy a file to another diskette.
4. Erase files.
5. Rename a file.
6. Display file names (directory).
7. Change a diskette name or ID.

Several of these services such as copying, erasing, renaming and displaying
the directory may also be done with built-in EXECUTIVE commands. The DISKETTE
utility can copy, delete, and rename files of PRG type or SEQ type, with any
legal Commodore name.

Probably your first use of the DISKETTE utility will be to make a backup
copy of the PROMAL SYSTEM DISK or PROMAL DEVELOPER’S DISK. Be sure to read the
License agreement before opening your sealed diskette(s). It is important to
make a copy of all the PROMAL distribution diskettes and only work with the
copy, so that in the event that any files are accidentally deleted, you can
always get a new copy from the original disk. You may make backup copies for
your own personal use subject to the license agreement. Making copies other
than as permitted by the license agreement is a violation of US Copyright law
and is a crime.

It is very easy to duplicate the PROMAL SYSTEM DISK, although rather time
consuming because of the slow operation of the Commodore 1541 drive; it takes
about 15-20 minutes to back up a PROMAL distribution disk. However, this is
time well spent. If you are fortunate enough to have a dual drive system, it
only takes 2 minutes. If you have a commercial fast—copier, you may use that.
It is a good idea to put a write-protect tab on your PROMAL diskette before
proceeding.

To run the DISKETTE utility, put the PROMAL Demo Disk a in the
drive and type this command from the EXECUTIVE:

--> DISKETTE

The screen will clear and a menu similar to this will be displayed:

Copyright (C) 1986 SMA Inc. Rev. C

(or copy)

Commodore 64:

Systems Management Associates, Inc. BACKUP DISKS

PROMAL DISKETTE UTILITY 2.0

MENU

QUIT (TO EXECUTIVE)
DUPLICATE ENTIRE DISK
NEW (FORMAT) DISK
COPY A FILE
ERASE (DELETE) FILE(S)
FILE NAMES DISPLAY (DIRECTORY)
RENAME FILE
ALTER DISK NAME OR ID>FU'HMOZUDYOUR SELECTION?

Press D and RETURN to duplicate an entire disk. Then just follow the
instructions. You will be asked if it is okay to unload the EDITOR to increase
the size of the copy buffer; type Y and return. You may use the RETURN key by
itself for a "yes" reply to questions needing a yes-or-no answer. You will be
prompted when to swap disks if you have a single drive. When your duplicate
disk is finished, the menu will be redisplayed. Q and RETURN to exit to
the EXECUTIVE.

For your normal operations, you will not need most of the files supplied on
the PROMAL disks, but will want the PROMAL system so that you can "boot
up" PROMAL from your working disk. The best way to do this is to use the
DISKETTE utility to format a new disk and then copy only the files you want.

To format a disk using DISKETTE, select the N option from the menu and
press RETURN. Again, just follow the directions. When prompted for a 2
character ID, pick any two characters that you have not used when formatting
another disk. It is very important to use a different ID on each of your
disks. This is how the 1541 disk drive DOS figures out when you have changed
disks. If you have two diskettes with the same ID but different contents
and swap them, the directories and files may be corrupted.

After formatting your new diskette, insert your copy of the PROMAL Demo
disk in the drive and select the C option from the menu. Copy the follow-
ing files one at a time using the C option:

PROMAL
EDIT.C
EXECUTIVE.C
COMPILE.C Or the "full" compiler from the sealed disk
LIBRARY.S
COMPERRMSG.T
DATE.C

Note that unlike the EXECUTIVE COPY command, you must type the “.6” extension
explicitly when copying files with DISKETTE. Also, since DISKETTE can copy
files with any legal Commodore name (of type PRG or SEQ), you must be careful
to type in upper case letters if the file you want is in upper case (you may
wish to use CTRL-A to lock uppercase alphabetic characters).

Copyright (C) 1986 SMA Inc. Rev. C

MAKING WORKING DISKETIES

Press

BACKUP DISKS Systems Msnaflnt Associates, Inc. 0-3

The list of files above is the basic working set needed to boot PROMAL and
develop software. You may also wish to copy DISKETTE.C, REALFUNCS.S or other
programs. If you plan to boot up using another disk, then you only need to
copy COMPILE.C and possibly EDIT.C if you will be compiling with the "B" (big
program) option. It is possible to boot up without EDIT.C, COMPILE.C,
COMPERRMSG.T, and DATE.C, but you will normally want these.

The size file which can be copied is limited to the size of the available
buffer space, normally about 26K bytes. You can copy files of up to 64K bytes
using the standard EXECUTIVE COPY command (more if you have 2 drives)

You can also delete and rename files with DISKETTE. When deleting, note
that wildcards are acceptable when you are prompted for a file name to delete.
Be very careful when using wildcards; there is no prompt for a chance to change
your mind! When the deletion is completed, the standard Commodore disk
message will indicate the number of files deleted ("scratched"). For example:

01, FILES SCRATCHED,02,00

indicates two files were deleted (the number after "FILES SCRATCHED", not
before it!). If the message indicates 00 files scratched, you probably spelled
the name wrong (don’t forget you have to add .C explicitly for PROMAL programs
and match upper and lower case exactly).

Copyright (C) 1986 SMA Inc. Rev. C

HISCELLANEOUS OPERATIONS

u!“a.d.uu.&v

Systems Manag Associates, Inc. BACKUP DISKS

APPENDIX P

FINAL SYNTAX DIAGRANS

The syntax diagrams on the tollow1ng pages provide definitive reference for
statement construction in PROMAL. If you are not familiar with syntax diagrams,
then study the narrative which follows while referring to the named diagrams.

NOW TO READ SYNTAX DIAGNANS

Consider the first path of the STHE diagram, which is the syntax diagram
which shows you how to construct an assignment statement.

The symbols shown inside ovals are keywords or punctuation which must be
typed exactly as shown. The symbols shown in rectangles describe things which
you, the programmer, must supply. The lines connecting the ovals and rectan-
gles show all the legal paths which you may take. For example, to make an
assignment statement, the first thing you need is a VAR. This is the variable
name to receive the result of the assignment. Exiting from the right side of
the VAR. rectangle, we see that we have a "fork in the road", meaning we can
take any of the paths. If we go "straight ahead" on the middle track, we come
to an oval with an equals sign in it. Since this is an oval, we would write
the equals sign. Finally, we come to a rectangular box called EXP. This
stands for "expression", which means we can put any kind of expression there.

We already know about forming expressions. Probably the simplest expression
is just a literal number. Therefore a legal assignment statement could be:

X=0

which sets the variable X to We also know that a variable can be used for
an expression, so another legal assignment statement would be:

ZVAL=X

We are assuming that X and ZVAL have been declared previously. We also know
that more complicated expressions can be formed with operators. For example:

CMIN=(ZVAL-l)/2

But how do we find out EXACTLY what is a legal expression on the right side
of an assignment statement? For example, is this legal?

VB=X 0R Y

To find out, we consult the syntax diagram which defines an expression. Since
you already know that expressions can be quite complicated and involve many
possibilities, you might expect that the syntax diagram for an expression is
also complicated. In fact, it is the most complex element of the language.
Let’s look at the EXP syntax diagram, which appears deceptively simple.

Copyright (C) 1986 SMA Inc. Rev. C

-..—..., -..- ..____

SYNTAX DIAGRAMS Systems Management Associates, Inc.

The EXP starts with something called a RELATION. Consulting the syntax
diagram for a RELATION, we find it in turn starts with a SIMPLEXP. This is
getting complicated! A SIMPLEXP can start either with a - sign or a TERM.
Since our case doesn’t start with a - sign, it must be a TERM (if it’s legal).
A TERM starts with something called a FACTOR.

A FACTOR starts with a lot of choices immediately. One of these choices
(on the eighth line down) is "VAR.", which stands for variable. Now we are
getting some place! We know X is a variable, but can our variable X be
followed by the keyword "OR"? Follow the path out of the VAR rectangle, up and
out of the diagram for FACTOR. We have now completed FACTOR, but we remember
that FACTOR was just the start of a TERM, from the diagram above it. Tracing
the path from the FACTOR rectangle we see several choices (*, /, etc.), but
none of them are OR, so we continue to the right, exiting the TERM diagram.

Also, we remember that TERM was encountered in the SIMPLEXP diagram, so we
follow the arrow out of the SIMPLEXP diagram, since there are no paths there
that lead to OR. Returning to the diagram for RELATION after the SIMPLEXP box,
we again find no path leading to an OR, so we exit to the right. Finally, we
come back to the EXP diagram, and following the RELATION rectangle, we find a
path that leads to OR. Therefore we know we can have a variable followed by
GR. Following the path from the OR rectangle, we see we must come to RELATION
again. Therefore we must have another RELATION after the OR. But since we
already know from working our way down to FACTOR before that a relation can be
a variable, we know that our statement is legal since Y is a variable.

Before finally concluding that our statement is legal, though, we must make
sure that nothing else is required to follow what we already have. To do this,
we must trace a path from the exit of the RELATION box to the exit of the EXP
box, and then from the exit of the EXP box in the ASSIGN STMT diagram to the
end-of—line symbol. The end-of-line symbol is shown as a down-pointing arrow
in a circle, symbolically representing a carriage return.

Naturally you won’t consult the syntax diagrams every time you write a
statement! But if in the process of writing a program, if the compiler gives
you an error message, and it is not obvious what is wrong, you can always
consult the syntax diagrams to help find out what the problem is.

As an aside for the technically curious, you might be interested to know
that the PROMAL COMPILER is really just a PROMAL program which tries to match
your source program to the syntax diagrams! Each syntax diagram in this
Appendix is implemented as one subroutine in the compiler. For instance, the
COMPILER contains procedures called EXP, SIMPLEXP, RELATION, TERM, and FACTOR.
Each of the "forks in the road" in the syntax diagram corresponds to an IF
statement in one of these routines. To "parse" your assignment statement, the
ASSIGNSTMT routine calls the EXP routine which calls the SIMPLEXP routine,
etc., in the same manner as we just traced through the syntax diagram. If the
compiler gets to a point where the next thing in your program doesn’t match any
of the choices, it prints an error message.

Now that you know how to read syntax diagrams, which are the "authority" on
what is legal in PROMAL, you can refer to these diagrams whenever you have a
question about the "legality" of a particular PROMAL statement.

Copyright (C) 1986 SMA Inc. Rev. C

P-Z Systems Hanag A iatns, Inc. SYNTAX DIAGRAHS

Symbol Meaning

A syntactically legal path.
A literal symbol. to be entered as shown.
A user-supplied item based on another diagram.
End-of-Iine (Carriage Return or comment).
Indent one level.
‘Exdent'(opposite of indent) one level,

PROGRAM
_ROGRAM ->NAME 7—.fi 0-1
»————u
+—————:
+————>
+———->
+—————>
—>-—>_»@->

9-T—_f—>@-—)EXP
-—>®

-e®—»
CON DEF.
~> cow m»&>———>-a

a
--—-I

EXT DECL. @EfibqEXT |NAME l
WORD.3. e-e—awa
ASM m m [ZN/we

__HfPROC

Rev. CCopyright (C) 1986 SMA Inc.

SYNTAX DIAGRAHS Systems Management Associates, Inc. P—3

P-4 Systems Management Associates, Inc. SYNTAX DIAGRAMS

GLOBAL DECL.
Vr>| NAME : l

0 CONS 0

sue.DEF.

Copyright (C) 1983 SMA Inc. Rev. C

m
m
m
m
m a

0

lb

——)(RETURN ‘r r)
NOTHING 4v

IF STMT

P-5

Copyright (c) 1986 SMA Inc.

CHOOSESTMT EXP
CHOOSEH (,

REPEAT STMT
REPEAT

UNTIL

FORSTMT
9 I333 0

H’ STMT
1

EXP
—)| RELATION : >

RELATION

RELATIONm ,

>a++a+azjl
-
SIMPLEXP

Copyright (C) 1986 SMA Inc. Rev. C

Systems Management Associates, Inc. SYNTAX DIAGIAHS

SYNTAX DIAGRAHS Systems Misgmmt Associates,

SIMPLEX

TERM

FACTOR

FACTOR
— 0 CHAR '

0'_-
TRUE

FALSE

NOT FACTOR

m
REAL CONS

9
VAR

—9| FUNC NAME Ir

(I EXP I)

DEFINED NAME

NUMBER h IO -CONS

Inc.

Copyright (C) 1986 SMA Inc. Rev. C

CONS.

P-8 Systems Management Associates, Inc. SYNTAX DIAGRAMS

VAR.
—>| VAR NAME : E

0 EXP 0

Copyright (C) 1986 SMA Inc. Rev. C

A number of demonstration programs are provided on the PROMAL System disk
or optional Developer’s disk, as well as on the Demo disk. Several demo
programs were discussed in the MEET PROMAL! manual. You may compile and run
these demonstrations, and you can use the EDITOR to extract parts of them to
use in your own programs. By studying the programs you can learn many valuable
techniques. Below is a summary of most of the demonstration programs provided.

BILLIARDS.S (COMMODORE 64 ONLY)

This program is discussed briefly in the MEET PROMAL! manual. It makes
extensive use of sprites for animation of a billiards game. It also uses real
math extensively for computing the motion of the balls, and has many conver-
sions (type casts) between real and byte data types.

BUDGET.S

This is a very simple demonstration program which illustrates how to format
real numbers for output. It uses the file BUDGETDATA.D for data. The file
BUDGETDOC.T provides more information.

This program, when compiled, provides a demonstration program which simu~
lates a four-function calculator with 26 memories (named A through Z). This
program is discussed in MEET PROMALI. To start the program, just type CALC,
and follow the directions. The Demo disk has the source code for CALC, which
illustrates how to write a recursive-descent expression evaluator in PROMAL.
This program is only about 180 lines long (excluding comments), yet it can
parse and evaluate arbitrary arithmetic expressions with nested parentheses.

CHECKSUM.S

This program computes the checksum of a specified block of memory. It is
useful for determining if any bytes in a block of memory have changed. The
comments provide further information on operation and theory.

This program will be found on the System Disk rather than on the demo disk.
It is used to convert text files generated by other Apple II software which
sets bit 7 of each byte to 1, to standard ASCII format for use with PROMAL. It
also truncates lines longer than 125 columns, making files acceptable to the
PROMAL EDITOR. It illustrates how to write a simple file filter in PROMAL.

Copyright (C) 1986 S’NA Inc. Rev. C

CLEARBIT7.S (APPLE II ONLY)

'rv-

CALC.S

APPENDIX

DEMO PROGRAHS Systems Wilt Associates, Inc. Q-l

RELDEMO.S (COHHODORE 64 ONLY)

This program is
Appendix H.

This program is a useful utility which allows you to display the contents of
any file in hex and ASCII, similar to the way the DUMP command displays
memory. Any type of file can be dumped. The command syntax is:

DUMPFILE Filename [Type]

This will display the first 256 bytes of the file. The Type argument is needed
only on the Commodore 64 for file types other than SEQ. No default file
extension is used, so be sure to specify ".C" when dumping compiled programs.
Pressing the RETURN key will display the next 256 bytes. Pressing any other
key will terminate the program. DUMPFILE supports output redirection, so you
can dump a file to the printer. The source and object code for DUMPFILE are on
the Demo disk or the System disk. This program illustrates conditional
compilation, so you must specify COMPILE DUMPFILE V=A on the Apple or V=C on
the Commodore to compile the program. See the comments for more information.

This program computes the "Cyclic Redundancy Check" of a file and displays
it. This is useful for comparing two files to see if they are identical. The
comments in the source file explain the program operation and theory. It
contains good examples of bit manipulation operators.

This program is discussed at length in the MEET PROMAL! manual. It
searches a file for lines containing a specified string and displays these
lines.

GRAPHDEMO.S (COMMODORE 64 ONLY)

This is a demonstration of high-resolution graphics using PROMAL. The
program is self-explanatory when executed. The source code includes procedures
for defining and clearing the hi-res screen, and drawing points and lines.
These routines can be extracted using the editor for use with programs of your
own design. NOTE: This program does not use or require the GRAPHICS TOOLBOX.
The GRAPHICS TOOLBOX provides much higher performance and is much easier to
use.

(COMMODORE 64 ONLY)

This is a fairly large and complex demonstration illustrating animation
using screen scrolling, sprites, joystick input, and sound synthesis. You will
need to issue a WS 0 command to edit this file and compile it using the B
option (full compiler). This program is an excellent example of how to make
good use of PROMAL procedures and functions to simplify a complex program.

a simple demonstration of relative files. It is explained
in

Copyright (C) 1986 SMA Inc. Rev. C

INFILTRATOR.S

FIND.S

FILECRC.S

DUMPFILE.S

Q-Z Syst-s Management Associates, Inc. DEMOPROGRAMS

RELOCATE.S

This program converts machine language programs into relocatable form for
use with the PROMAL loader. It is described in Appendix I. This program uses
conditional compilation, so read the comments in the source before compiling.
This program uses include files RELOCAPL.S or RELOCC64.S.

SORTDEMO.S (APPLE II ONLY)

This program is described briefly in MEET PROMALI. It provides a demon-
stration of formatted output, file access, printer access, and general tech-
niques.

SORTSTRING.S

This program provides a general shell sort routine for sorting arbitrary
string arrays, and illustrates to generate an array of strings read from a
file. See the comments in the source file for usage.

This is a utility program which can be used to split a text file which is
too large to edit into two smaller files. The file can be split after a
specified number of lines, or before a line containing a specified string. The
command syntax is:

SPLIT Sourcefile Firstfile Secondfile Count
or

SPLIT Sourcefile Firstfile Secondfile String

where Sourcefile is the file to be split, Firstfile is the name of the file to
receive the first part of the file, and Secondfile is the name of the file to
receive the other part of the file. No default file extensions are provided,
so be sure to include “.8" for normal source files. Count is the number of
lines to be copied from Sourcefile to Firstfile; the rest will go to
Secondfile. String is a non-numeric string. The first line containing String
anywhere in the line will be the first line sent to Secondfile when this form
is specified. See the source program file for further information.

SSEND.S and SRECEIVE.S

This complementary pair of programs provides for error-free serial trans-
mission of any type of files between Apple II computers at up to 9600 baud, and
up to 600 baud for Commodore 64. Files can be exchanged between Apples and
Commodores, too. The programs are described in Appendix F. The subroutines
provided can be used as the basis for any kind of communications program.

TINYTERM.S

This program is a minimal implementation of a communications program for
communicating over a modem to a time sharing service or bulletin board service.
It is explained in Appendix F.

Copyright (C) 1986 SMA Inc. Rev. C

SPLIT.S

how

DEMO PROGRAMS SystemsmtAssociates, Inc.

Copyright (C) 1986 SMA Inc. Rev. C

This page is intentionally left blank.

Q-4 Systems Management Associates, Inc. DEMO PROGRAMS

ABORT (PROC)4—5
ABS (FUNC)........4—5
ALPHA (FUNC)..................4-6
AND operator.3-17,3-Zl/22
ARG statement.....3-42

-- cmmd line..l-l4/15,1-21/22,3-56/57
-- defining......................3—A2
-- passing....3-42/45
-- substituting in JOB file......2-31

Arithmetic expressions.3-17/20
Arithmetic operators..3—17
Arrays:

of DATA strings.......1—27,3-15/16
of strings.......3—65
declaring3-14/15

-— multi-dimensional.3—15,3-64
ASCII character set...A-l
ASM routine, declaring..I-7/10,I-12/13
Assembly language subroutines:
-- calling LIB routines from.....I—10
-- interfacing to..............1-1/15
-- relocatable................I-ll/15

Assignment statement.........1-19,3-26
AT keyword in EXT statement..1-29,3-58
ATAN (FUNC)........................K-1
Audience, for PROMAL...............1-3

Backing up disks.o—l/A
Batch job capability...2-30/31
BEGIN statement...................3-41
BILLIARDS.S (sample program).......Q-l
Blank lines, as comments..... ..1-16
BLKMOV (PROC)......................4-6
BO0TSCRIPT.J file............ ..2—30
Bootstrap, to control loading.....3-76
BREAK statement................3-31/32
BUDGET.S (sample program).....1—24,Q-l
BUFFERS (APPLE II EXEC cmd).......2-15
Built-in functions & procedures...3-36
BYTE, data type.1—18,3-8/9

C

CARG variable..1-14/15,1-21/22,3-56/57
CALC.S (sample program)....1-24/25,Q-l
Characters, literal...............3—10
Characters, string extraction.....3—23
Checksum......................1-13,4-7
Checksum, MAP display......... ..1-13
CHECKSUM.S (sample program)... .Q—l
CHKSUM (FUNC)................. .4—7

CHOOSE statement... . . .3—30/31
CLEARBIT7.S (utility program)..N-2,Q-l
Clearing screen from program.4-43,4-45
CLOSE (PROC)...4-—7
CMPSTR (FUNC).............4——8
COLOR(EXEC cmd)..2—16
Command line args......1-14/15,3-—56/57
Commands: (see EXECUTIVE, EDITOR)
-- user defined...................2-4
-- case insensitivity.............2-4
—- line editing, (TABLE 1)......2-5/7

notation conventions...........2—9
system-dependent keys..2-7
EDITOR (TABLE 5)...........2-47/49
EXECUTIVE (TABLE 2)............2-8

Comment lines..............1-16
Compatibility with IBM PROMAL....L-1/2
COMPILE (EXEC cmd).............2-56/58
Compiler:..................2-2,2-56/60

command options............2-56/58
cross reference utility.......2-6O
dialog2-58/60
edit after error.2-59
introduction to..2-56
invoking.................1-11,2-56
screen displays.........-......l-11

Compiling, conditional.........3-49/50
Compiling, sample program.........1-1l
Compiling, very large prgrms...2—57/58
CON statement................1-26,3-l3
Conditional compilation........3-49/50
Conditional stmrs, short-cuts.....3—33
Constants, defining.l—26,3-13
COPY (EXEC cmd)...2—17/19
Copyright Notice................ii,l-2
COS (FUNC).......K-l
CS (EXEC cmd)....2-19
CTRL ‘ (Adj. rt.-APPLE II)...1-28,2—48
CTRL \ (Clr. end -APPLE II)...2—5,2-48
CTRL [(Start of line -C64)...2-6,2-48
CTRL A (Alphalock)........1-9,2-6,2-48
CTRL B (Cmd recall).......l-9,2-6,2-49
CTRL C (Abort cmd. -APPLE II)......2-7
CTRL D (Del char.-APPLE II)...2-5,2-47
CTRL E (Insert -APPLE II).....2-5,2-47
CTRL F (Strt of In -APPLE II).2-6,2—48
CTRL I (Indent)..........2-48
CTRL J (Adj. rt. -C64).......1-28,2-48
CTRL K (Clr. end -C64)........2-5,2-48
CTRL L (End of ln —APPLE II)..2—5,2—48
CTRL (Next page)................2-48
CTRL (Adjust left).........l-28,2—49
CTRL P (Previous page)............2-48
CTRL (Um-indent -APPLE II)......2-48
CTRL RESET (Abort cmd.-APPLE II)...2-6
CTRL STOP (Abort cmd.-C64)2-6

Copyright (C) 1985, SMA, Inc.

Arguments

CTRL U (Un-indent -Cé4)...........2-48
CTRL V (Normalize window -C64)....2-49
CTRL W (Set window -C64)..........2-49
CTRL X (Clr line).............2-5,2-48
CTRL Y (End of line -C64).....2—5,2-48
CTRL Y (Home —APPLE II)....2-48
CTRL Z (End of file mark).2-6
CTRL <-- (Del char. -664)2-5,2-47
CURCOL (FUNC)...............4-9
CURLINE (FUNC)..............4-9
CURSET (PROC)....4-10

D

DATA:
arrays of strings........1—27,3-16
defining arrays of.. .3-15/16
definition..........3-15
REAL..........................3-15
statement example.....l-27,3-15/16

Data communications support......F-1/6
Data types................3-8/9
Date, entering.1—6
DATE (EXEC cmd)2—20
DEL key (C64).................2-5,2-47
Delete key (APPLE II).........2-5,2-47
DELETE (EXEC cmd)..............2—20/21
Demo diskette, limitations of......1-3
Demo programs........Q-1/3
Device names (TABLE 4).2-13
Device numbers (C64)... . .E—1,N-1
DIR (FUNC).....................4—10/11
DIROPEN (FUNC).........4-11
DISKCMD (EXEC cmd)..... .2-21/22
Disk drives, dual support of.......N-l
DISKETTE utility (C64)...... ..0—2/4
DUMP command, example....... ...1-8
DUMP (EXEC cmd)...................2—23
DUMPFILE.S (utility program).......Q-2
Dynamic memory allocation....H-l
DYNO (EXEC cmd)................2-22/23
DYNODISK... .. .1-5,2-22/23,4-18

EDIT (EXEC cmd)...2-24,2-44
Editor:........1—9,2-2,2-44/55
—- CHANGE (F6)l-26,2-51

COPY (F7)..2—52
char. sets & modes (C-64).....2—55
cut & paste operations. .. .2-52
DEL LN (F1)............ .. .2-49
display format.............2—44/46
EDIT (EXEC cmd)........ .2—24,2—44
edit buffer & workspace....2-54/55
editing keys (TABLE 5).....2-47/49

entering from EXECUTIVE..2-44
features of2-44
FIND (F5)..........1-25/26,2—50/51
FKEYs legend after MARK..1-27,2-52
HELP (F7).....................2-46
initial screen display........2-45
inserting & deleting lines....2-49
inserting block or file....2-52/53
INS LN (F2)...................2—49
introduction to1—9/10

-- invoking1-9,2-24,2-44
MARK (F3)....1-27,2-52
MOVE (F6).....................2-52
QUIT display. ... 1-10,2-53
QUIT (F8)....2—53
RECALL (F4)..............2-49,2-53
sample sessions.....1-9/10,l—25/29
saving block to file.......2-52/53
scrolling..........2-46
search & replace... ...1—26,2-51
searching..................2-50/51
status area...................2-46
WRITE (F4).....2—52/53

EDLINE (FUNC).....4-12/14
Error messages...........C-1/12
Errors:
-- from LOADer...................3-71
-- after 0PEN...........4-36

Executing sample program..1-12
Executive:...............2-2/43

arguments for commands.2-9,2-12/13
arg passing fm cmd line....3-56/57
commands, search order.........2-4
commands, summary (TABLE 2)....2-8
entering commands1-6/7
guided tour of1-6/9
HELP screen..........1-8
line editing keys.....2-5/6
user defined commands2—4

EXIT (PROC)..............4—14
EXP (FUNC).........................K-l
EXPORT Keyword............3-73
EXPORT (.E) files-....3-74/75
Exporting, definition..........3-73/74
Expressions:

arithmetic..3—17/20
logical..........3-21/22
mixed mode..3-18/20
relationa1..3—21

EXT keyword.....1-29,3-57/59
EXTCOPY (utility command).2-18
EXTDIR: (utility command).....1-7,2-25
-- example of........2--25

Extensions, file name... .. .2-12
“Clo \Lhnuuu 4,-----.. 1.,w,

Copyright (C) 1986, SMA, Inc.

FALSEl-21,3-21
FILECRC.S (sample program).........Q-2
Field spec., formatted output.....4-4l
File descriptor................. .3-51
File name extensions (TABLE 3)....2-12
File names, rules for:
-- Commodore 64................ .2-10
-- Apple IIe/IIc..............2-11/12

Files:
converting APPLE II DOS 3.3....N-2
COPY (EXEC cmd)....... ...2-17/19
DELETE (EXEC cmd)..........2—20/21
DISKETTE utility......0-2/4
handle, definition of....l-22,3-51
JOB (.J)...................2—30/31
locked......................2-32
opening............3——51/52,4-36/40
RENAME (EXEC cmd).............2—39
TYPE (EXEC cmd)...2-41

FILES (EXEC cmd)......2-24/25
FILL (EXEC cmd)2—26
FILL (PRDC)...........4-14/15
FIND.S (sample program)....1—15/23,Q-2
FKEY (EXEC cmd).2-26/27
FKEYGET (PROC)4-15/16
FKEYSET (PROC)......4-16
FOR statement..................3-29/30
Format string, output spec...3—37,4-41
Formatted output.......3—37/38,4-4l/43
Formatting disks.................O-1/3
Forward references.................J—l
FUNC, function header...3-41
Function keys:

default setting....1-6,2-3,2-26/27
editor's display..1—9
redefining............2—26/27,4-16
use of............2-4

Functions & procedures:...1—18,3-36/47
-- arguments in...............3—42/45

built-in..3-36/37
intro to.........3-36
REAL.................K-l/Z

6

GET (EXEC cmd)2—27/29
GETARGS (FUNC)....4-17
GETBLKF (FUNC).....4—18
GETC (FUNC)......4—19
GETCF (FUNC).....4—20
GETKEY (FUNC)............4-20/21,B-l/4
GETL (PROC).....4—21/22
GETLF (FUNC)....4—22/23
GETPOSF (FUNC) (APPLE II).........4—23

GETTST (FUNC).................. ..4-24
GETVER (FUNC)...4-24/25
GO (EXEC cmd)...2-28/29
GRAPHDEMO.S (sample program).......Q-2
Graphics, Hi-Res . ..1—33,2-15,Q—2

Hardware requirements...1—2
HELP display screen......l-8,2-29
HELP (EXEC cmd)......2-29/30
Hexadecimal, literal numbers....3—9/10
Hexadecimal, used in EXEC cmds....2-12
Hi-res graphics.1—33,2-15,Q-2
HOME key (C64)2-48

IBM PROMAL compatibility.L—1/2
IF statement............3-26/28
IMPORT keyword3-74
Importing, definitions.........3-74/75
INCLUDE statement..1-11,3-37,3-48,3—74
Indentation.............l-20,1—28,3-27
Indirect operators.............3-23/24
INFILTRATOR (sample program)..1-32,Q-2
Initialization, PROMAL system....2-3/4
INLINE (FUNC)....4-25
INLIST (FUNC).............4-25/27
Input, numeric..3-39/41
Input, simple..3-38/39
INSET (FUNC)..............4-27/28
INST key (C64).2—5,2—47
INT, data type.3-8/9
Interfacing:.............3-51/60
-- to C64 graphics & sound....3-58/59
Interrupt service routines........I-15
INTSTR (PROC).....................4-28
IOERROR:
-- error code variable...3-51/52,4-36
-- errors, codes for.............4-36
I/O:

functions GETLF, PUTF......3-52/53
redirection...................2-l4
redirection, example of..l—23,2-14

—— with files STDIN/STDOUT....3—53/54

J

JOB (EXEC cmd)........ ..2-30/31,2-33
JOB files (.J):..2-30/31

substitution arguments in.....2-31
JSR (PROC)..................4—29,I-1/4

Copyright (C) 1985, SEA, Inc.

INDEX

Keyboard (K) device............ .2—13
Key codes....B-1/4

LENSTR4-29/30
.......1—11,2—3,3-51,4—2

-- (L) device....................2-13
—- routine description notation...4-4
-- summary of routines..........4-2/3

Line editing, keys (TABLE 1).....2-5/6
LIST statement...3-48
Literals:........3-9/12
-- characters3—10
-- numbers.3-9/10
-- strings.3-10/11

LOAD (PROC).3—70/73,4—3o
IDADER:.....3-67/82

bootstrap program with3-76/77
calling....................3-70/73

-- definitions used......3-67/68
errors from...........3-71
EXPORTing definitions......3-73/74
IMPORTing definitions......3-74/75

-- memory diagram...........3-70,3-78
operation of....3-68/70
options for.....3-72
overlays...................3-77/79
separate compilation.......3-75/76

Loading, PROMAL diskette..1-4/6
Loading, programs2-27/28,4-32/33
Local variables1-19,3-45/46
LOCK (EXEC cmd)2'32
Locked file....2-32,2-42
LOG (FUNC).....K-l
LOGlO (FUNC)....X—l
Logical operators.3-21/22
LOOKSTR (FUNC)....................4-30

M array3-24,3-44
Machine language programs:
-- calling LIB routines from.....I-10
-- calling with JSR........4-29,I-l/4

embedded in DATA..I-4/6
effect of BRK.....I-3
executing with GO..2-28/29
interfacing to.....I-1/15
interrupt service with........I-15
loading with GET...........2-27/28
loading with MLGET... .. .4-32/33

-- passing arguments to. ..I-8/10
-- relocatable................I-11/15

MACRO (EXEC cmd)2-32/33
MAP (EXEC cmd):.1—12,2-33/35
-- display screens...1—12/13,2-33/35

Memory allocation:
-- MAP display definitions....2-33/36
-- dynamic........................H-l

Memory map, PROMAL internal......G—l/6
MAX (FUNC)........................4-31
MIN (FUNC)..................4—32
MLGET (FUNC)................ ..4—32/33
MOVSTR (PROC)..4-33/34
MSD dual disk .N-l

N

Names, rules for.................3-7/8
NCARG variable... .l-21/22,3-56/57
NEWDIR (EXEC cmd)......2-36
NEXT statement...3-32
NOREAL (EXEC cmd)2-36/37
NOT operator........... ..3—17,3-21/22
Notation, conventions.2-9
NOTHING statement.....3-32
Null (N) device2-13/14
Numbers, literal......3—9/10
NUMERIC (FUNC)...4-34
Numeric input...........3-39/41

0

0, compiler option.2-56/57
Object program1-4
ONLINE (FUNC) (APPLE II) ...4-35
OPEN (FUNC).......l—22,3-51/55,4-36/40
OPEN, error codes.................4—36
Opening files..........3-51/52,4-36/40
Operating system notes...........N-1/2
Operators:
-- arithmetic.........3—17/18
-- indirect & address.........3—22/23

' list of all...3-17
logical........3—21/22
relational....3-21

-- shift.........3-22
Options for loader.3-72
OR operator...............3-17,3-21/22
Output, field descriptors....4—41
OUTPUT (PROC)................
OUTPUTF (PROC)................
Output:
-- formatted numeric..3-37/38,4—4l/44
-- PROC, example.3-37/38
-- simple........3-37

OVERLAY statement.3—25,3--77/79
Overlays:
-- definition of.................3-68

Copyright (C) 1986, SMA, Inc.

.4—41/43

.4—43/44

support (ce4)

LIBRARY:......
(FUNC).

using.3—77/79
-- guidelines for.............3-81/82

memory map.....3-78
sample program................3-78
variables.3-46,H-l

Pathnames.2-11
PAUSE (EXEC cmd)......2-37
Pointers..............3-22/24
POWER (FUNC)..........K-l
PREFIX (EXEC cmd).....2-1l,2—38
Printer (P) device........2-13,3-54/55
Printer support.......E-1/2
PROC, procedure header.3-4l
Procedures 6 functions:...1-18,3-36/47
-- introduction to....3-36
-- passing arguments to.......3-42/45
-- local variables in.........3—45/46

ProDOS, special functions....N-Z
Program authors...ii
PROGRAM statement.............3-4,3-25
Programs, dema:...Q—1/3
-- BUDGET........1-24-— CALC..........................1—25
—- FIND.......... 1-16/23

definition of..................1-3
initialization.2-3/4
loading........1—4/6
signon screen..1-6

-- special capabilities..........1-29
system components...2—2
Vs. BASIC.......1—4

applications of.3-2
data types......3—8/9
introduction to.....3-2
overview........3-3/6

-- names3-7/8
-- reserved words....... ...3—7,L—2
-- rules for.......1-18
-- syntax diagrams.P-3/8

PROQUIT (PROC)....4-44
PUT (PROC).... ... 1-10,3—37,4—44/45
PUTBLKF (PROC)4—45/46
PUTF (PROC)...1—22,4—47

Q

QUIT (EXEC cmd)...2-38/39

R

RANDOM (FUNC).....4—47/48

constants disallowed3-13
DATA......3-15

-- data type.......3-8/9
literals..3-10
numbers...1—24

-— variables, internal format.....D—2
REALSTR (PROC).................4-48/49
Recursion & forward references.....J-1
REDIRECT (PROC)............ ...4-49/50
Redirection, I/O........... 1-23,2—14
REFUGE statement...............3-33/34
Relative file support (C64)......M—1/5
RELDEMO.S (sample program).....M-5,Q-2
RELOCATE utility...............I-ll/15
RELOCATE.S (utility program).......Q-3
RENAME (EXEC cmd)..2-39
RENAME (FUNC)......4-50/51
REPEAT statement........3-29
Reserved words..... .3—7,L-2
RETURN key..........2-5,2-46
RETURN statement.........3-41/42
Reverse video...........3—11,4-43,4-45
RS-232 supportF-l/6
Runtime errors...................C-2/3
Runtime errors, locating.. .. .D-l

Screen (S) device.2-13
Scrolling, left & right......1-20,2-47
Scrolling, up & down.........1-16,2—47
SET (EXEC cmd)..2—39/40
SETPOSF (PROC) (APPLE II).........4-51
SETPREFIX (FUNC) (APPLE II).......4-52
Shift operators.............3-22
Signon display.....................1-6
SIN (FUNC).........................K-l
SIZE (EXEC cmd)................2-40/41
SORTDEMO.S (sample prog.)..l-30/31,Q-3
SORTSTRING.S (sample program)......Q-3
SPLIT.S (utility program)..........Q-3
SRECEIVE.S (utility prog.)...F-4/5,Q-3
SSEND.S (utility program)....F-4/5,Q-3
SQRT (FUNC).........R-l
Stack overflow....................3-47
Starting, system...........l-4/6,2-3/4
Statements:....................3-25/34

(=) assignment.3-26
BREAK..........3-31/32
CHOOSE.........3-30/31
ESCAPE G REFUGE............3-33/34
FOR.............3—29/30

Copyright (C) 1985, SMA, Inc.

OWN

INDEX

-— IF.l-21/22,3-26/28
NEXT.....3-32
NOTHING..3-32
PROGRAM..3-25
REPEAT...3-29
RETURN...3-41/42
WHILE......1—20,3-28/29

STDIN, SDTOUT file handles.....3-53/54
STOP key (C64)...................2-6/7
String operations:........3-45/46,3-23
-- arrays of.....3-65

compare.......1—20/21,4-8
conversion.......4—28,4-52/53,4-57
editing...4—12/14,4-25
length....4-29/30
move........4-33/34

-- searching.4-25/28,4-30,4-55
STRREAL (FUNC)....4-52/53
STRVAL (FUNC)..................4-53/54
Subroutines:......1-18,3—41/42,3-46/47
-- passed arguments...3—42/45
-- user defined.......3-41/47
Subscripts, arrays........3—14/15,3-64
SUBSTR (FUNC)..........4—55
Syntax diagrams, how to read.....P-1/2
Syntax diagrams..................P-3/8
System data areas.....G-5/6

TAN (FUNC)......K-l
Telephone (T) device........2-13,F-1/6
TINYTERM.5 (sample program)....F-5,Q--3
TO keyword3-29
TESTKEY (FUNC). .. .4-55/56,B-1/4
TOUPPER (FUNC).4—56
Trademarks......................ii,l-2
TRUE (1).......1—21,3-21
TYPE (EXEC cmd)2-41

U

UNLOAD (EXEC cmd)....2-42
UNLOCK (EXEC cmd)...2—42
UNTIL keyword.......3—29
Unprintable codes, embedding......3-ll
Upper & lower case mode (064).....2—55
Upper case & graphics mode ..2-55
User-defined commands..............2—4
User-defined subroutines.......3—41/47

V

Variables:
-- arrays, declaring..3-14/15
-- command line argument3—56/57

declarations.3-12/13
external (EXT)........1—29,3-57/59
global1-19,3e44
initializing all to zero......3-66
introduction to rules.........l-18
local.................1—19,3-45/46
locating in memory...........D—1/2
non-initialization of.........3-l3

—— OWN...........................3-46
types supported.........1—18,3-8/9

Volume names (APPLE II)...---.....2-ll

W

WHILE statement:3-28/29
-- example of...1-20

WORD data type.1—18,3-8/9
WORDSTR (PROC)....4-57
Workspace:-- and edit buffer............2—54/55

auto update after edit...2-54
changing size of.....2-43
clearing of...2—43
writing to....1-10
(W) device..........2-13

WS (EXEC cmd)......2—43

XOR operator.3-17,3-21/22
XREF (utility program)...2-60

2

ZAPFILE (FUNC).....4-57/58

Copyright (C) 1986, SMA, Inc.

(C64)

vegan-5 vyuauuavun.

INDEX

