
Hex Dec. Char. Hex Dec. Char. Hex Char. Hex Dec. Char.

00 0 NUL 20 32 space 40 64 @ 60 96 ‘

01 1 SOH 21 33 ! 41 65 A 61 97 a
02 2 STX 22 34 " 42 66 B 62 98 b
03 3 ETX 23 35 # 43 67 C 63 99 c
04 4 EOT 24 36 $ 44 68 D 64 100 d
05 5 ENQ 25 37 Z 45 69 E 65 101
06 6 ACK 26 38 & 46 70 F 66 102 f
07 7 BEL 27 39 47 71 G 67 103 g
08 8 BS 28 40 (48 72 H 68 104 h
09 9 HT 29 41) 49 73 I 69 105 1
0A 10 LF 2A 42 * 4A 74 J 6A 106 j
OB 11 VT 23 43 + 43 75 K 63 107 k
06 12 FF 2C 44 , 4C 76 L 6C 108 1
0D 13 CR 2D 45 4D 77 M 6D 109 m
0E 14 SO 2E 46 . 4E 78 N 6E 110 n
0F 15 2F 47 / 4F 79 0 6F 111 o
10 16 DLE 30 48 O 50 80 70 112 p
11 17 DCl 31 49 1 51 81 Q 71 113 q
12 18 DCZ 32 50 2 52 82 R 72 114 r
13 19 DC3 33 51 3 53 83 S 73 115 s
14 20 DC4 34 52 4 54 84 T 74 116 t
15 21 NAK 35 53 5 55 85 U 75 117 u
16 22 SYN 36 54 6 56 86 V 76 118 v
17 23 37 55 7 57 87 W 77 119 w
18 24 CAN 38 56 8 58 88 78 120 x
19 25 EM 39 57 9 59 89 Y 79 121 y
1A 26 SUB 3A 58 5A 90 Z 7A 122 z
13 27 ESC 33 59 SB 91 7B 123 {
1c 28 F5 3c 60 sc 92 7c 124 |
1D 29 GS 3D 61 5D 93] 7D 125 }
1E 30 RS 3E 62 94 “ 7E 126 ‘
1F 31 US 3F 63 5F 95 7F 127 DEL

Notes
1. D01 and DC3 are also known as XON and XOFF, respectively.
2. The Con-adore 64 character set ROMS do not support all characters. The

following replacements are made:

$5C (92) \ is replaced by (Pound sterling currency symbol)
$5F (95) __ is replaced by (Left pointing arrow)
$60 (96) ‘ is replaced by (Horizontal bar - not the minus sign)
$73 (123) { is replaced by (Cross — not the plus sign)
$7C (124) I is replaced by (left half checkerboard)
$7D (125) } is replaced by (vertical bar)
$7E (126) is replaced by (checkerboard)

£¢_+EIII
Copyright (C) 1986 SMA Inc. Rev. C

Au. ..
ETB

ASCII CHARACTER SET TABLE

Dec.

ASCII TABLE Systems Management Associates, Inc.

Copyright (C) 1986 SEA Inc. Rev. C

This page is intentionally left blank

A-2 Systems Management Associates, Inc. ASCII TABLE

LIFE-IX B

PROHAL KEY CODES
RETURNED BY FUNCTIONS GETKEY E TESTKEY (HEX)

Table 13-1: Commodore 64

Key Legend Plain Shift CTRL C_= Remarks

06

I.#$Zr“; (\I/////////13/4. 6789o

British currency

CLR HOME
INST DEL

QWER

ASDFG
it

up arrow
RESTORE

30

AC
BB
A5

BLK
WHT
RED
CYN

PUR
GRN
BLU
YEL
RVS 0N

RVS OFF

(pounds ster.)

Copyright (C) 1986 SEA Inc. Rev. C

513‘ (next to 1 key)arrow)(left

PROHAL KEY CODES Systems Management Associates, Inc.

HJKL:
Table 8-1 continued: Commodore 64

Key Legend Plain Shift CTRL C= Remarks

;/]

V

(>7///NM:
/

6A BS
GB Al
6C 36
3A SB

33 5D
3D 3D
0D 8D

7A AD
78 BD
63 BC
76 BE
62 BF

6E AA
6D A7
20 3C. 2E 3E
2F 3F

CRSR up down 11 91
CRSR <= = 1D 9D
f1 f2 85 89
f3 f4 86 8A
f5 f6 87 8B
f7 f8 88 8C

space 20 —— 20
RUN STOP 03 * 83

Notes:

CTRL/RUN STOP aborts program to the PROMAL EXECUTIVE.
SHIFT/C= switches mode (upper & lower <--> upper & graphics)
Codes shown assume upper & lower case mode.
Alpha—lock (CTRL-A) affects GETKEY but not TESTKEY codes.

Copyright (C) 1986 SEA Inc. Rev. C

////

3-2 Systas Management Associates, Inc. 211mm. KEY CODES

Plain Shift CTRL Apple Shift/Apple

!@Ll..u$Z&* (\/////////////11. I456 890

SO

0PASDFG
me

Copyright (C) 1986 SEA Inc.

DELETE

30

ESC

Key Legend

Table 8-2: Apple II

PROHAL KEY CODES Systus Management Associates, Inc. 3-3

Key Legend Plain Shift CTRL Apple Shift/Apple

CV

(>9.////
NM 1./a

<__
-->
down arrow
up arrow

NOTES:
Alpha lock (CTRL-A)

Copyright (C) 1986 SHA Inc. Rev. C

affects GETKEY but not TESTKEY.

RETURN

Table B-2 Continued - Apple II

Systems Hanaguent Associates, Inc. PROHAL KEY CODES

Emir-menu:.".
Arranged alphabetically (including punctuation)

*** ERROR: ALREADY LOADED
You have attempted to GET a program which is already in memory. If
this is deliberate, UNLOAD the program first and then re-issue the GET
command.

*** ERROR: DEVICE NOT READY
Usually this indicates that the disk drive door is not closed. Also
check for a disconnected or off-line printer or disk drive, unformatted
disk, etc. On the Apple II, this error probably indicates that you
changed diskettes without issuing a PREFIX command to select the new
volume (PREFIX * can fix this).

*** ERROR: DISK ERROR
This uncommon error message indicates a hardware read or write error on
the disk. Check for a disk drive turned off or not connected, etc. It
may indicate that your diskette has become damaged or that the disk
drive heads need to be cleaned. It may also indicate that part of the
operating system has been wiped out in memory by an errant program, or
similar difficulties. It may also indicate an attempt to append a
write—protected disk or locked file.

*** ERROR: FILE DOES NOT EXIST
You have issued a command to the EXECUTIVE to act on a file which does
not exist on the currently selected disk. Remember that the default
file extension is ".C". If you are trying to act on a file which does
not have a file extension remember to enclose the name in quotes (case
sensitive on the Commodore 64). For the Commodore 64 COPY command, if
the file is not type SEQ, the type must be specified after a comma
inside the quotes, for example "BASICPROG,P". 0n the Apple 11, you may
have switched disks without a PREFIX * command.

*** ERROR: FILE ALREADY EXISTS
You have issued an EXECUTIVE command which tried to write a new file
with the same name as an existing file. If this was deliberate, DELETE
the existing file and try again. Remember that the default file
extension is .C. For file names without extensions, the name should be
enclosed in quotes.

*** ERROR: ILLEGAL COMMAND SYNTAX
You have issued an EXECUTIVE command with arguments which do not
conform to the requirements. Consult the PROMAL USER’S GUIDE for the
proper command syntax.

Copyright (C) 1986 SKA Inc. Rev. C

ERROR MESSAGES AND HEARINGS

APPENDIX

ERROR MESSAGES SystemsWt Associates, Inc. C-l

**'k

ERROR: ILLEGAL FILE/DEVICE NAME
You have issued a command with an illegal file or device name. Check
the file naming conventions described in the first part of the PROMAL
USER’S MANUAL. For non-conforming files, you must enclose the file
names in quotes when using the EXECUTIVE. For the Apple, make sure you
are not trying to copy between two disks with the same volume name.

ERROR: ILLEGAL OPEN DIRECTION
You have issued a command which tries to output to an input-only
device, or visa-verse.

ERROR: NOT ENOUGH FREE DISK
You have issued an EXECUTIVE command which has tried to write a file to
disk larger than the remaining disk space, or, there are no more
buffers (Apple II) or channels (Commodore 64) available.

ERROR: NOT IMP.
The command you have issued is not implemented on your version of
PROMAL.

ERROR: WRITE PROTECTED
You have issued a command which attempted to write or alter a
write-protected disk (or a locked file on the Apple). If you wish,
remove the write protect sticker or UNLOCK the file and try again.

RUNTIME ERROR: 0 DIVIDE
Division (or Z) by zero, or an arithmetic overflow has occurred. If
this error occurred during compilation, then a REAL literal number was
specified which was out of range. The largest REAL number is
approximately 1E+37.

RUNTIME ERROR: I-O ILLEGAL DIRECTION
A library routine was called to input or output to a or device
which was opened in a different mode; for example, trying to input from
the printer.

RUNTIME ERROR: ILLEGAL / UNOPEN FILE HANDLE
A library routine expected to find an open file handle for the first
argument, but did not find one. Check for a missing file handle where
required. Check to make sure you have properly opened the file or
device and have saved the file handle in a WORD type variable. Make
sure you have not already closed the handle. An OPEN function call
should always be tested for success. If the function returns it was
not successful.

RUNTIME ERROR: ILLEGAL # ARCS - LIB. CALL
A library PROC or FUNC or machine language routine was called with an
invalid number of arguments. Check the LIBRARY MANUAL for the correct
arguments required.

RUNTIME ERROR: ILLEGAL ARG, LIB. CALL
A library routine was called with an invalid or out-of—range argument.
Make sure you are using the appropriate type arguments (e.g., not using
a REAL where a WORD is expected). Check the LIBRARY MANUAL for
restrictions on arguments.

Copyright (C) 1986 SMA Inc. Rev. C

free

C-2 Systms Management Associates, Inc. ERROR MESSAGES

—I-_ 'l—l—I—l—I' "“unifies:—
'_'.—_—T_-'.T_=.'-25:11—11

.= 'I'.:I'.':.,r:=——————'—._'I='_ --— —-EE.'—'_-"T;'.'.-'::.'-.I-:.T?T=-

--J- IF- —. _. _.-—-——_'i;¥;§*_-—rfi 3—-
-. ._..__-.____.£__;

*** RUNTIME ERROR: ILLEGAL I-O REDIRECTION
An illegal I-O redirection has been made. Only STDIN, STDOUT, and
STDJOB may be redirected, and they must be redirected to an open file
or device. Check for a missing # in front of STDIN or STDOUT. See
REDIRECT in the LIBRARY MANUAL for further information.

*** RUNTIME ERROR: ILLEGAL OPCODE
A program has attempted to execute a non—existent instruction. Make
sure you are not trying to use REAL arithmetic after a NOREAL command.
It can also be caused by a program destroying itself by writing data
into its code space. Check for bad pointers, arrays out of bounds,
using a value where an address is required, etc. If this error occurs
during compilation, you have attempted to compile a program using REAL
data after executing a NOREAL command.

*** RUNTIME ERROR: M/L BREAK
A machine language BRK ($00) instruction has been executed. If this is
not expected, it is often a symptom of a piece of a program (probably
the PROMAL library) having been zeroed by an errant program. It may
also reflect an erroneous definition of an EXTernal routine or failure
to load a required software package.

*** RUNTIME ERROR: PROMAL BREAK
A PROMAL PROGRAM (possibly the EDITor or EXECUTIVE) has encountered a
$00 instruction at the indicated address. This usually indicates that
an program bug has caused part of the program to become zeroed out.
Check for bad pointers, arrays out of bounds, using a value where an
address is required, etc.

*** RUNTIME ERROR: REQ'D PROGRAM NOT LOADED
A required software package is not in memory. Check to see if you are
trying to use REAL arithmetic after a NOREAL command. It may also
reflect a defective EXTernal declaration. If this error occurs during
compilation, you are trying to compile REAL data after a NOREAL
command.

*** RUNTIME ERROR: STACK ERROR
The stack has overflowed. This may indicate that you have a routine
which calls itself indefinitely or a recursion error. It may also
indicate subroutines nested too deeply or with too many arguments
passed. If this error occurred during compilation, you have a
statement with an expression which is too complex to compile due to
stack limitations (for example, 12 levels of parentheses). This may be
aggravated by having many levels of indentation, and by using function
calls in the expression. In this case, use intermediate temporary
variables for sub-expressions to reduce the complexity of the
statement.

Copyright (C) 1986 SMA Inc. Rev. C

ERROR MESSAGES Systems Manag iates, Inc.

ERROR 1:
Illegal character here

The compiler has encountered a character which cannot legally be
present at this point in the statement. Check for a missing or extra
punctuation mark. If the source file was created by something other
than the PROMAL EDITor, check for an embedded tab, linefeed, or other
invisible control character (DUMPFILE may help find it).

ERROR 2:
Illegal character constant

A character constant must be a single character enclosed by single
quotes (’). Check for missing quote or more than one character. The
quote character itself can be written as ””

Illegal string constant
A string constant must be enclosed on both ends by double quotes
It may not cross a line boundary. Check for unbalanced quotes. The
double quote character can be written inside a string as .

ERROR 4:
PROGRAM or OVERLAY expected

Your program must start with a PROGRAM statement (or OVERLAY
statement). Make sure you are compiling the right file.

ERROR 5:
<Name> expected

The compiler expected to find an identifier (name) at this point in the
statement. Make sure are not trying to use a reserved word as a
name.

Duplicate name
The identifier has already been declared previously. Make sure you are
not trying to define a name that is already defined in the LIBRARY,
INCLUDE file, etc. Also make sure that you don’t have a variable that
duplicates a procedure, function or data name, or visa—verse. In some
circumstances, this error may refer to an identifier on the line above
the one shown.

ERROR 7:
expected

The compiler expected to see an operator at this point in the
statement. Make sure that you are not trying to use a simple
(un-subscripted) variable as an array, or as a procedure name.

ERROR 8:
Constant expected

The compiler expected to see a constant at this point in the
statement. Be sure you are not trying to use a variable name where a
constant is required. Remember that you may not have constants of type
REAL. Also check to make sure that the value specified for the
constant is not out of range (Note: the offending constant may be
slightly beyond the row of asterisks on the compiler error message)
For example, $100000 is an out of range constant.

Copyright (C) 1986 SKA Inc. Rev. C

ERROR 6:

you

Systems Mamgaent Associates, Inc. ERROR MESSAGES

we

— .-——l—— "

__ I ——:r-'a-'='-£‘
- _ -'_1.-

""'- __ —'—.__"..'.|'ET‘———-:‘*-‘
-I. I

—_—_ _- .__ I: II_—_--
__________-._-__.:...____ _.

. __ __1:____-—_-|=_":-.-.'-'-
—--—|.—---. Ir-

ERROR 9:
] expected

The compiler expected to find a right bracket at this point in the
statement. Remember that square brackets, not parentheses, are used to
delimit PROMAL array subscripts. Check for a missing comma. Remember
that you should not specify the size of a DATA or EXTernal array.

ERROR 10:
Illegal data type

The expression does not meet the required data type. Remember that in
a DATA declaration defining a string, the type is WORD, not BYTE,
because the result is a pointer to the string. Also remember that a
FOR-statement index must be a simple variable of type WORD. The
choices on a CHOOSE statement must match the type of the expression
following the CHOOSE exactly (you may need a type cast to make a small
numeric constant match a word or integer variable, for example 1:+),
and may not be type REAL. Finally, keep in mind that the boolean
operators AND, OR, NOT, and XOR operate only on type BYTE.

ERROR 11:
Illegal subscript

Subscripted variables may not be used for local variables or arguments.

ERROR 12:
Variable name expected

The compiler expected to find a variable name at this point in the
statement. Make sure that you are not trying to use a reserved word,
procedure, function name, or constant for a variable. DATA names may
not be the destination for an assignment statement.

ERROR l3:
expected

The compiler expected a right parentheses at this point in the
statement. Check for too many or too few arguments on a function call,
or missing or unbalanced parentheses. Also make sure you are not
trying to enclose the argument list for a procedure call in
parentheses.

ERROR 14:
Illegal expression

The expression does not follow the syntax diagram in Appendix F of the
PROMAL LANGUAGE MANUAL. Check for an illegal sequence of operators,
missing punctuation, etc. Note that the indirect operators (@<, @+,
@-, @.) may not appear after the variable name for an assignment
statement (use the global array instead).

ERROR 15:
is illegal here

The # address operator cannot be used here. The address operator
cannot appear on the left hand side of an assignment statement, nor can
it be applied to anything except a variable. The # operator must
directly precede the variable name.

Copyright (C) 1986 SMA Inc.

ERROR MESSAGES Systems Management Associates, Inc. 0-5

ERROR 16:
Type name expected

The compiler expected to see BYTE, INT, WORD, or REAL at this point in
the statement. The type indicator must precede the variable or
function name.

ERROR 17:
BEGIN expected

The statement is illegal at this point 1n the program. If you have a
declaration, check the first word for spelling. If this is an
executable statement, you must have a BEGIN statement first.

ERROR 18:
End of line expected

This is a general error message indicating that the compiler could not
construct a legal statement with what you have at this point in the
line. Check for: too many arguments on a procedure call, subscripts on
a simple variable, etc. Also be sure you didn’t forget the which
must precede comment.

ERROR 19:
, expected

The compiler expected a comma at this point in the statement. Check
for too few subscripts on an array reference, or too few arguments on a
function or procedure call.

ERROR 20:
Illegal type name here

The type (BYTE, or REAL) indicated is inconsistent with
prior usage.

ERROR 21:
Not in WHILE or REPEAT loop

The BREAK or NEXT statements may only be used inside a WHILE or REPEAT
loop.

ERROR 22:
Statement expected

This is a general error message indicating that the compiler was
expecting an executable statement but did not find one. Check for a
missing END statement in a prior procedure or function or a misplaced
declaration.

ERROR 23:
Wrong # of arguments

The procedure or function call has too many or too few arguments.

ERROR 24:
Indentation error

The statement starts with the wrong indentation. Each level of
indentation must be exactly two blanks. A statement following a
conditional statement must be indented. If this is a statement
terminating a conditional block such as an ELSE or UNTIL, it should
not be indented as far as the line immediately above it. Each choice
of a CHOOSE statement should be at the same level of indentation as the

Copyright (C) 1986 SM Inc. Rev. C

INT, worn,

Systems Management Associates, Inc. ERROR MESSAGES

-.—- —-—I—'-l- "'.... __ -__ - __|_. _.___._-.'_'.".? F~'—.
I

--=I=I-_-I—I _.I— .a.-m--

§:._._.-,__
_5 —:'fl":'lEll“arr—"=15

E--I-IIl—'—'' _-

original CHOOSE keyword; the statements executed for each choice should
be indented one level. Check also for a missing ELSE for 3 choose
statement, which is always required.

ERROR 25:
UNTIL expected

A preceding REPEAT statement is not balanced by an UNTIL at the same
level of indentation.

ERROR 26:
Unexpected end of file

The compiler reached end-of-file without having reached the END
statement in the main program. Check for a missing END statement or
INCLUDE statement.

ERROR 27:
Undefined

The identifier indicated has not been previously declared or defined.
All variables, constants, procedures and functions must be declared
before they are referenced. Check for a missing INCLUDE LIBRARY or
other INCLUDE statement, or for a spelling error.

ERROR 28:
Illegal FOR variable

The index variable for a FOR—loop must be a simple (non-subscripted)
variable of type WORD.

ERROR 29:
TO expected

The compiler expected the keyword T0 to appear at this point in the
statement.

ERROR 30:
expected

The compiler expected to find a left bracket at this point. Remember
that square brackets, not parentheses, are used to delimit PROMAL
arrays. Make sure you are not trying to use an array name on the left
side of an assignment statement without specifying which element of the
array should get the result.

ERROR 31:
PROC or FUNC expected

The compiler expected to see the keyword PROC or FUNC at this point in
the declaration. This error can also be caused by a missing type
indicator (BYTE, INT, or WORD) on an EXTernal variable declaration.

ERROR 32:
AT expected

The COMPILER expected to find the keyword AT at this point in the
declaration.

ERROR 33:
Illegal refuge

The keyword REFUGE must be followed by a constant of value 0, 1, or 2.

Copyright (C) 1986 SMA Inc. Rev. C

FOR

ERROR MESSAGES Systems Mascot Associates, Inc.

ERROR 34:
Illegal REAL constant

A literal number is incorrectly formed. Check for the letter or 1
instead of zero or one, missing ’.’, etc. On the Commodore check
for cross or bar characters instead of + or

ERROR 35:
Non-REAL expected

An expression of type REAL is not legal at this point. Subscripts must
be type WORD. CHOOSE statements may not have an expression of type
REAL. declarations may not be REAL (use DATA instead).

import
You have more IMPORT files than are allowed (maximum is or have an
erroneous declaration in an imported block.

ERROR 37:
Illegal (import var) :>

You may not use the high-byte operator on an imported variable
appearing on the left hand side of an assignment statement.

ERROR 38:
Illegal export

The declaration cannot be EXPORTed. Only constants, variables, data,
procedures and functions can be EXPORTed. You may not EXPORT EXTernal
declarations. Check for missing EXPORT keyword on PROGRAM line.

ERROR 39:
Too many dimensions

PROMAL arrays may have a maximum of eight dimensions.

ERROR 40:
Demo compiler can’t IMPORT/EXPORT

The compiler on the PROMAL DEMO diskette does not support EXPORT
declarations or INCLUDE files of IMPORTS. You must use the full
compiler for these features.

ERROR 129:
Compilation cancelled

This is not an error message, but indicates that compilation was
terminated by the operator in response to a prompt.

ERROR 130:
Not enough free memory

The COMPILER cannot find enough memory for its tables. UNLOAD
some programs and try again. On the Commodore-64 using the standard
compiler, you will not be able to compile unless the workspace is
clear (but you can with the demo compiler). On the Apple II, if you
have issued a BUFFERS HIRES, you will need to give a BUFFERS 3 command
before compiling.

Copyright (C) 1986 SMA Inc. Rev. C

free

ERROR 36:
Illegal

Systems Management Associates, Inc. ERROR MESSAGES

ERROR 131:
Cannot open object file

The compiler cannot open the object file for writing. Check for a
write-protected diskette or full diskette. On the Apple, check for a
locked file or diskette change without PREFIX command.

ERROR 132:
Cannot open source file

The compiler could not find the specified source file, or could not
successfully open it for reading (for example, drive not ready). Check
for spelling errors. The default extension for source files is “.5".
On the Apple, check for disk changed without PREFIX * command.

ERROR 133:
Cannot open list file

The compiler could not open the listing file for writing. Check for
device not ready, write-protected disk, disk full, etc. The default
extension for the list file is ".L"

ERROR 134:
Cannot open export file

The compiler could not open the export file for writing. Make sure
that the disk is not write-protected or full (or the file locked on the
Apple). The Commodore 64 may not be able to open the export_file if
you have a listing enabled (due to limitations of the 1541 drive).

ERROR 135:
Cannot open include file

The compiler cannot find or cannot open the specified INCLUDE file for
reading. Make sure the desired file is present on the disk. The
default file extension is ".5". On the Apple II, this may be caused by
not having the proper prefix (volume name). Also, you may have to
increase the number of buffers on the Apple if you have a listing file,
export file, and/or nested INCLUDE files.

ERROR 136:
source file, Workspace empty

No source file name was specified on the COMPILE command, and the
Workspace is empty. You need to specify a filename to be compiled.

ERROR 137:
Illegal COMPILE argument

The COMPILE command has an illegal argument. See the PROMAL USER’S
GUIDE for the correct command syntax.

File name duplicates another argument
One of the output file names specified on the line is the same
as one of the input files, including the extension.

ERROR 139:
Can’t write to L device

The L device was specified as an output file for the compiler. This is
not permitted.

Copyright (C) 1986 SHA Inc. Rev. C

ERROR 138:

No

ERROR MESSAGES Systems Management Associates, Inc.

II I—m—_ _-
E _ .F..-I_...__.-_ .-..
='-=-— -' E; ---—_r:—

FEL—Z—Z—lEF.—_'
1 _._"Erma-I-

E'_n
=|==|—--I—--r—--—-- -'- _ _I.- ___

j):
ERROR 140:
Can’t write to Workspace

The W device was specified as an output file for the compiler. This is
not permitted.

ERROR 141:
String buffer overflow (Use B option)

The string buffer (literal pool) used by the compiler has overflowed.
UNLOAD all programs and use the B option on the COMPILE command. If
you have already done this, use the B=Solf option to increase the size
of the literal pool (See USER’S GUIDE).

ERROR 142:
Forward Reference overflow

The forward reference table used by the compiler has overflowed.
UNLOAD all programs and use the B option on the COMPILE command. If
you have already done this, use the B=Solf option to increase the size
of the forward reference table.

ERROR 143:
Object buffer overflow (Use B option)

The object buffer used internally by the compiler has overflowed.
UNLOAD all programs and use the B option on the COMPILE command.

ERROR 144:
Symbol table overflow (Use B option)

The internal symbol table used by the compiler has overflowed. UNLOAD
all programs and use the B option on the COMPILE command. if you have
already done this, use the B=Solf option to increase the size of the
symbol table.

ERROR 145:
Too many ELSEs

Your program has an IF with more ELSEs than the compiler can handle, or
nested loops greater than it can handle.

ERROR 146:
Too many nested loops

Your program has loops nested to a greater depth or complexity than the
compiler can handle.

ERROR 147:
INCLUDES overnested

You have an INCLUDE statement inside an INCLUDE file, which requires
opening more files than the Commodore 64 disk or Apple ProDOS will
allow.

ERROR 148:
Unbalanced ? (conditional comp.)

You have a ? in column 1 of a statement initiating a conditional block
which is not balanced by a matching ? terminating the conditional
compilation block. Conditional compilation blocks may not be nested.

Copyright (C) 1986 SM Inc. Rev. C

increase

C-lO Systems Enlargement Associates, Inc. ERROR MESSAGES

ERROR 149:
1st sector rewrite error

For the Commodore 64, this indicates hardware or firmware disk drive
failure or incompatibility. Don’t use 2-sided mode on a 1571.

ERROR 150:
B option not in Demo compiler

The B compiler option is not supported in by the PROMAL DEMO COMPILER.
You must use the full compiler (on the System Disk) to use the B
option.

ERROR 151:
Demo compiler line limit exceeded

The Demo compiler can only compile files with up to lines,
excluding comments (but including the LIBRARY). You need to use the
full compiler on the PROMAL system disk.

ERROR 152:
Disk write error

The compiler encountered a disk error while writing a file.

ERROR 153:
Disk full

There was not enough room to write the file the disk.

xxxx ISN'T A TEXT FILE
You have tried to EDIT a file named xxxx which the EDITor thinks is not
a text file. Check to see if you are trying to edit a compiled program
or data. It may also indicate that the file has lines longer than 125
characters. For the Apple II, it may indicate that the file was
prepared with a word processor which sets bit 7 of each character to
1. If this is the case, you can fix the file by using the CLEARBIT7
demo program.

BUFFER SPACE
The EDITor could not find enough free space for its buffer. To correct
this, type UNLOAD (and WS 0 if you are not using the Workspace on the
Commodore 64), and try again.

NOT A PROMAL OBJECT FILE: xxxx
You have attempted to execute a file which is not a compiled PROMAL
program or a relocatable machine language program. All PROMAL programs
must be successfully compiled before they can be executed. This error
usually occurs when you try to execute a program which was compiled
using the B option but had compilation errors. It can also occur if
you attempt to execute a version 2.0 module on a version 1.x PROMAL
system.

ENOUGH FREE MEMORY
The specified program or overlay could not be loaded because there is
not enough free memory. If it is a program on the Commodore 64, you
will need to set the Workspace size to 0 and try again. If it is an
overlay, you need to unload all programs and restart the main program.
If the problem persists, your program may simply be too large.
Consider modifying it to use overlays, or, use the NOREAL command if

Copyright (C) 1986 SEA Inc. Rev. C

NOT

400

ERROR MESSAGES Systems Managgnt Associates, Inc. C-ll

appropriate, to free up more memory. Remember that your variables also
require memory; you should consider reducing the size of your arrays.
For the Commodore 64, you can gain a lot of space by using a bootstrap
loader to set HIFREE and HIMEM to MEMLIM and then loading your program
as described in the section on the LOADer.

NOT LOADED 0R RELOC ERROR: xxxx
You have attempted to load or execute a program or overlay which
imports from the indicated program or overlay, without having that
program or overlay loaded first. UNLOAD memory and use the GET command
to load any programs needed. You may wish to write a bootstrap program
as described in the LOADer section of the PROMAL LANGUAGE MANUAL to
load the required modules automatically. If the program name shown is
the same as the program you are trying to execute, then there is not
enough free memory to relocate your program after loading it. You need
to unload other programs or free up additional memory as described
above.

OK TO CLEAR WORKSPACE (Y/N)?

PROGRAM

This Commodore 64 message is not an error message but a warning. It is
given if you specified the B option on the compiler, but there is
something in the Workspace. If you reply with a Y, the compiler will
clear the workspace and proceed. Otherwise, it will abort.

OR OVERLAY NOT FOUND: xxxx
You have issued an EXECUTIVE command which is not a built in command,
nor is it in memory or on disk. Check for spelling errors, and make
sure you have the correct diskette. Remember that ".C" will be the
default file extension. For the Apple II, you may have changed disks
without using the PREFIX command to set the new volume name.

xxxx T00 LARGE T0 EDIT
The specified file name, xxxx, is too large to EDIT in the available
memory space. To correct this, type UNLOAD to free additional memory
and try again. If you are not using the Workspace on the Commodore 64,
you should also issue a WS 0 command. If you have already done all
this, your file may be too large to EDIT. You can split it into two
files using the SPLIT Utility, and then edit each file separately.

USER BREAK
This is not necessarily an indication of an error, but shows that the
program was aborted by the user (by CTRL-STOP on the Commodore 64 or by
CTRL‘C or CTRL-RESET on the Apple)

Copyright (C) 1986 SHA Inc. Rev. C

C—12 Systems Management Associates, Inc. ERROR MESSAGES

The PROMAL nucleus provides runtime checking for many errors such as
division by zero, illegal arguments on Library routines, etc. A typical
runtime error message would be:

*** RUNTIME ERROR: ILLEGAL ARGS LIB CALL
AT $7232

This tells you that you attempted to call a Library routine with too many or
too few arguments. But where in your program did this occur? The absolute
address is given in the error message as $7232. To find the offending state-
ment in your listing, proceed as follows:

1. Execute a MAP command from the EXECUTIVE.

2. Locate your program’s starting address (e.g. in the MAP
display.

3. Subtract this value (using hex arithmetic) from the address displayed
with the error message. The result is the relative address from the start
of your program, for example $7232 - $7100 = $01B2.

4. Using your program listing, find the statement (not a variable or data
declaration) with an address (shown in the column to the left of the
statement) that spans the calculated address. This statement (or possibly,
the preceding or next statement) is the one where your error occurred.

You can use a similar technique to DUMP the value of shared global varia—
bles and global scalar variables (but not local variables). Shared global
variables are arrays of any type, or REAL variables (both simple and arrays).
Global scalar variables are non-array BYTE, INT and WORD variables which are
not declared inside a PROC or

To locate a global scalar variable, add the address shown to the left of
the variable’s declaration on the listing to the address shown as the starting
address for variables in your map display. For example, if your listing shows:

8 BYTE MYVAL

and the MAP for your loaded program shows:

MYPROG (PRO.) 9/ 3/85 CHKSUM 439D
AT 7100—73FF (VARS: AlOO-AZFF)

then add $08 to $A100, giving $A108. This is the absolute address of your
variable, MYAL = $A108. Note that if the variables start at an address above
the "SYSTEM SPACE" location on the Apple II, you will not be able to DUMP the
correct value of your variable because the EXECUTIVE has re-used that address
space.

Copyright (C) 1986 SEA Inc. Rev. C

"AT 7100")

ARIABLES IN MEMORY

LOCATING ERRORS Systems Management Associates, Inc. D-l

S(--Exp--><----------------Mantissa----------------->

Locating an array or REAL variable is slightly more complex. Use the SIZE
command (or the summary at the end of the listing) to determine the number of
bytes of scalar variables used by your program. For example, if the SIZE
command displays:

MYPROG (PRO.) 9/ 3/85 VER.2
CODE $ZOBA, GLOB VARS some, $09

then your program has $09 bytes of scalar variables. Add this number to the
address shown in the listing for your variable, and add that result to the
starting address of variables shown for the map command. For instance, using
the above example, if your listing shows:

6A WORD VALUES [5]

then the absolute address is at

When displaying the value of variables, remember that WORD and INT vari
ables are stored with the low order byte first and the high order byte at the
next higher address.

REAL variables occupy 6 bytes each, in the following format:

Addr: +0 +1 +2 +3 +4 +5

This format is based on the IEEE standard single precision data format, but
is extended with 2 additional bytes in the low order mantissa to increase the
accuracy from 6 to 11 significant decimal digits. It uses a binary
representation where:

S = 1 bit sign (1=negative value)
Exp 8 bit exponent (biased by $7F, if number=0.0)
Mantissa 39 bit mantissa normalized between 1.0 and 2.0,

with an implied 1 bit & binary point to left of mantissa.

If you are not familiar with floating point representations, you may wish
to consult an "elementary" book on computer arithmetic, or the IEEE Floating
Point Standard before attempting to interpret the value.

Note for numerical analysts: The PROMAL floating point routines do not
support gradual underflow. Any number with an exponent of zero is considered
zero. Also, rounding-to—even is not supported (but rounding is). This is of
no consequence to normal users.

Copyright (C) 1986 SMA Inc. Rev. C

of VALUE[0] $A173 ($6A $09 +$A100)

Systms Management Associates, Inc. LOCATING ERRORS

APPENDIX E

PRINTER SUPPORT

COMMODORE 64 PRINTER SUPPORI

PROMAL supports standard Commodore Printers using the serial interface.
All Commodore and Commodore-compatible printers we tested worked without any
special effort as the "P" device with PROMAL. Parallel printers using Cardco
(Model C through G+) or similar adapters should also function normally.

Printers (or printer interfaces) often have special modes selected on the
basis of the "secondary address". The following three variables can be used to
control your printer:

EXT ASM BYTE 064PSA AT $0DF3 ; Desired secondary address (default 7)
EXT ASM BYTE C64PUL AT $ODF4 ; Bit 7=1=flip case (default=$80=yes)
EXT ASM BYTE C64PDV AT $ODF5 ; C-64 printer device # (default 4)

You should set these variables to the desired choices before OPENing the P
device. The C64PUL variable controls whether or not lower case and upper case
alphabetic characters should be reversed before output to the printer. This is
normally needed because PROMAL uses standard ASCII characters but most
Commodore-compatible printers expect "Commodore ASCII". If your printer
prints alphabetic characters in the wrong case, you can use a SET DF4 0 command
from the EXECUTIVE, or in your BOOTSCRIPT.J file.

The standard Commodore device number for the printer is However, if you
have a second printer on the serial bus or are using a plotter, you may wish to
open the P device to a different device number. You can do this by installing
the desired device number in the byte at $0DF5 (C64PDV).

The Commodore 1525 printer does not support form feeds, so listings will not
be properly paginated, but 1526 printers will work properly.

It has been reported that some versions of the Commodore 1526 printer have
intermittent problems when used with the 1541 disk drive. These problems are
characterized by a serial bus "lockup", which may cause the system to hang
inexplicably or to display error number 40 or 41. This problem has nothing to
do with PROMAL and will also appear with other software. Rather, this is a
problem with the Commodore ROMs in the printer and/or disk drive. If you
experience these problems, you may want to contact Commodore dealer and request
that he upgrade your system to the latest level ROMs. If in doubt, you can
find out what ROMs you have in your printer by performing the 1526 self-test.
If the prints "CBM COMMODORE 1526/MPM-802 PRINTER - REV 07C", then you have the
latest printer ROMs. At the time of publication of this manual, our best
information is that the latest ROMS are as follows:

1541 Disk Drive ROM part number 901229-05
1526 Printer ROM part number 325341-08

(Our sincere thanks to Mr. A. Ryan of Ontario who provided this information)

Copyright (C) 1986 SHA Inc. Rev. C

PRINTER SUPPORT Systems Management Associates, Inc.

PROMAL supports standard Apple printers or compatible printers. For the
IIe, the printer card should be installed in slot 1 and conform to the stan-
dards for Apple Pascal. For the Apple IIc, the printer should be attached to
the printer port (port 1) in the usual fashion.

You can control whether or not PROMAL should automatically send a LF after
every CR to your printer by the setting of the following variable:

EXT BYTE APLPALF AT $ODF3 ; Bit 7=1=send LF after CR

If your printer double spaces when it should single space, set this variable to
This can be done from the EXECUTIVE or a JOB file with a SET DF3 0

command. If it prints one line on top of the other, set it to $80. When
outputting graphics or speciual escape sequences, you may need to turn this off
(so a $0D graphic data byte won’t be interpreted as a CR and cause a suppious
$OA linefeed data byte to be sent to the printer).

Also, if your computer is a IIc or is connected by a serial interface, you
will need to set another variable to 0 to perform graphics or escape
sequences. This is not a PROMAL variable, but a global Apple variable that
controls the ROM output routines in the Apple:

EXT BYTE PRESCCH AT $0638+$CO+1 ; Serial command enable flag, Apple

PRESCCH = 0 ; Disable Apple ROM processing of serial printer output

This will keep the Apple from processing escape sequences to the serial port
internally, and will pass them straight through to the printer.

PROMAL automatically configures an appropriate printer driver for your
computer during boot-up. In very rare cases, if you are using a printer card
which does not follow the Apple standard, you may have to supply your own
printer driver. In this case, See APPENDIX C, which tells the location of a
pointer to a table of addresses for the printer driver input and output
vectors. The table pointed to consists of a WORD holding the address of the
initialization entry point, followed by a WORD holding the addres of the output
entry point (will be called with character in A).

Copyright (C) 1986 SHA Inc. Rev. C

APPLE II PRINTER SUPPORT

Systems Management Associates, Inc. PRINTER SUPPORT

PROMAL provides support for serial data communications using RS-23ZC
asynchronous data transmission by the T device. Input and output for EXECUTIVE
commands can be redirected to the modem in the same way as to the printer or
other device. More frequently, a PROMAL program will perform input and output
to the T device. This makes it relatively easy to handle roughly 90 percent of
your telecommunications needs. This section assumes you have a basic working
knowledge of the fundamentals of data communications, such as baud rate,
parity, etc. If you don’t, you may wish to consult a reference book, such as
RS-232 Made Easy by Martin D. Seyer. You may also need to consult the documen-
tation for your particular modem or RS-232 adapter.

You can specify the baud rate, parity, number of data bits, and number of
stop bits desired for the T device before opening it. This can be done either
using the TMODE utility program, or by setting values into memory directly from
a program.

The TMODE utility is a PROMAL program provided on disk, which has the
following command syntax:

TMODE [Baud [Parity [Databits [Stopbits

If no arguments are given, it displays the current values. Band is the desired
baud rate, (default is 300 when PROMAL is started). Legal values can be 110,
300, 600, 1200, 2400, 4800, or 9600. You may also abbreviate 300 as 3, 9600 as
96, etc. When PROMAL is booted up, the initial baud rate is set to 300. The
second optional argument is Parity, which should be specified as E, 0, N, M, or
S for even, odd, none, mark or space, respectively. The initial default is
none. The third argument is Databits which should be 7 or 8. The initial
default is 8. The final optional argument is Stopbits, which should be 1 or
2. The initial default is 1. Most systems use 1 stop bit except at 110 baud.
Optional arguments which are not specified remain unchanged.

The values specified by the TMODE command will take effect the next time the
T device is opened (or used in an EXECUTIVE command). The values set by TMODE
may also be set directly from a program, discussed below.

For many applications, programming the device is very simple. You just
need to open it and then input or output to it the same way would a file.
For example:

Copyright (c) 1986 SEA Inc.

PROGRAMMING THE T DEVICE

you

mom: UTILITY

MIA COMMUNICATIONS SUPPORT

DATA COMMUNICATIONS Systems Hanaggnent Associates, Inc.

WORD MODEM ; File handle for T device
BYTE BUFFER[81] ; Input buffer for T device

MODEM=OPEN("T",’B’) ; Open T for input & output
IF MODEM=0 ; Trouble?

ABORT "#CCan’t open T device"
PUTF MODEM, NL,"This is transmitted over the modem.",NL

IF GETLF(MODEM,BUFFER,80)
PUT BUFFER,NL ; Display line received from modem

The primary added complexity of dealing with a modem is handling the
situation where no data is received when it is expected. To handle this,
status routine is provided, to tell you when data is ready to read. In
addition, global variables are provided to allow selecting different
communications parameters under program control. These definitions are given
in the file PROSYS.S and are summarized below:

EXT ASM FUNC BYTE GETTST AT $0FC6 ; TRUE if ready. Arg=0 input,1=output.

EXT BYTE TBAUD AT $ODE9 ; 3=110,6=300,7=600,8=1200,AF2400,C=4800,E=9600
EXT BYTE TPARITY AT $0DEA ; O=none, 1=odd, 2=even, 3=mark, 4=space
EXT BYTE TDATAB AT $0DEE ; 0=8 bits, 1=7, 2=6, 3=5
EXT BYTE TSTOPB AT $0DEC ; 0=1 stop bite, 1=2 stop bits
EXT BYTE TEOFCH AT $0DED ; EOF char. (CTRL-Z default), unless TDEVRAW set
EXT BYTE TDEVALF AT $0DEE ; Auto line feed, $00=no, $80=out,$40=in,$CO=both
EXT BYTE TDEVRAW AT $0DEE ; "Raw" mode flag, $80 = no EOF or LF processing
EXT BYTE TDEVST AT $0DFO ; Status byte from last operation (see below)

Function GETTST requires one argument which is either 0 (to test the input
status of the T device) or 1 (to test the output status). The function returns
TRUE if the serial device is ready and FALSE otherwise. For input, it will
return TRUE when at least one character has been received and can be read. For
an example of how to use GETTST, see file TINYTERM.S.

The variables TBAUD, TPARITY, TDATAB, and TSTOPB can be used to set the same
values which are set or displayed by TMODE, from within a program, for example:

TBAUD=$08
TPARITY=2

This selects 1200 baud with even parity. The desired values should be set
prior to opening the T device. See the SRECEIVE.S and SSEND.S files for
examples of how to set these variables.

TEOFCH is used to determine what character should be treated as End-of—File
for input from the T device, defaulting to CTRL-z ($1A). The default value
allows a remote serial device to be used for input to the EXECUTIVE by
redirecting input to the T device. TEOFCH is particulary significant for
programs which use GETBLKF to read from the T device (generally not
recommended).

Copyright (C) 1986 SKA Inc. Rev. C

Systems Management Associates, Inc. DATA COHHUNICATIOHS

---'-|II.¥___-—

I- _I.I lllfln-
:: '—__ ___ —'—|_I-_

1". I' '- "' '_—_--_— —_=- -__ _-_l—5_—_r_-——_
___r _ _ I I

In a program, you will often not want any character interpreted as end of
file. This can be done by setting the TDEVRAW flag to $80 (not to TRUE!),
which causes the T device to pass all characters straight through. The TDEVALF
byte is the "auto line feed" flag. Setting bit 7 to 1 causes the T device
driver to add a line feed ($0A) automatically after every CR ($0D) is sent.
This may be needed it you have a serial printer or another computer connected
to the serial port. Setting bit 6 of TDEVALF to 1 causes the driver to discard
incoming linefeeds. If the TDEVRAW flag is $80, both TDEVALF and TEOF are
ignored.

DETAILED INFORMATION FOR APPLE II T DEVICE

The Apple II T device driver supports the Apple Super Serial card and true
compatible cards, and the Apple IIc serial port 2. For maximum flexibility,
the PROMAL device driver manipulates the 6551 chip hardware directly.
Therefore it does not support the Apple Pascal escape-sequences for selecting
communication attributes, etc. (which are unsuitable for many applications).
PROMAL does not support buffered T device input using interrupts, because
of the incompatibility of some serial cards. This means that your application
program may have difficulty "keeping up" with an incoming stream of characters
from the T device at higher baud rates if it does extensive screen output or
other time-consuming activities. Expert programmers with serious telecommuni-
cations applications may wish to write their own interrupt service routine,
following the guidelines in the Apple Reference Manual. For this reason, or
in order to support incompatible cards, PROMAL leaves "hooks" for writing your
own T device drivers. If your serial card does not have a 6551 chip with its
data register at $COA8, you will have to write your own driver to use the T
device.

The WORD at $0DF1 (Apple only!) is a pointer to a table of WORDS containing
the addresses of the initialization, status, input, and output routines,
respectively, used by the PROMAL T device. All are machine language routines.
The INIT routine has no arguments and returns nothing. The STATUS routine
expects AFO for input or A=1 for output, returns the status in A, and the carry
bit set if ready. The INPUT routine has no arguments and returns the character
in A. The OUTPUT routine expects the character in A and returns nothing.

The TDEVST byte is set by any status, input, or output calls, as follows:

Bit Parity error Bit 4 Transmit buffer empty
Bit 1 Framing error Bit 5 DCD not state
Bit 2 Overrun error Bit 6 DSR not state
Bit 3 Receive buffer full Bit 7 Interrupt flag

We have successfully used the T device on the Apple at the full 9600 baud
with the built in drivers (for example, the SSEND and SRECEIVE programs).
Naturally, this depends on your program. For example, if you attempt to access
disk or have another time-consuming activity while characters are received, you
will lose characters. In this case you should either arrange to have
transmission halted temporarily (for example, using XON-XOFF protocol), or use
a machine language buffered interrupt service routine.

Copyright (C) 1986 SMA Inc. Rev. C

DATA COMMUNICATIONS Systems Management Associates, Inc. F-3

DETAILED INFORMATION FOR COMMODORE 64 T DEVICE

The Commodore 64 uses the standard "Kernal" ROM support for RS-232, and is
therefore subject to the same limitations. Opening the T device causes a 512
byte buffer to be allocated at LOFREE (an open error may indicate that there is
not enough room for this), and LOFREE is moved up accordingly. This buffer is
filled and emptied by the non—maskable interrupt routine in ROM. The RS-232
device is always opened in Commodore “3-line” mode; "X-line" is not supported
due to problems in the Commodore firmware. For the Commodore, the T device
driver will return an end-of—file indication on input if the buffer is empty or
the Break detected bit is set in the status.

When using a modem (as opposed to direct connection through an RS-232 level
shifter such as the Commodore 1011A), you will need to do additional
programming to control the special modem functions. For example, to use the
model 1660 300-baud modem, you will need to access the parallel port (user
port) to go "off hook" after you open the T device. The TINYTERM program
illustrates how to do this. For other modems or features such as dialing, you
will need to consult your modem manual.

In general, we recommend you do not exceed 600 baud on the Commodore,
although we have had success with 1200 baud provided that a long "burst" is not
send to the Commodore at the full 120 characters per second. Naturally, this
depends on the ability of your program to keep up.

The TDEVST byte reflects the status after any input, output, or status call
to the T device, as follows:

Bit Not functional Bit 4 Not functional
Bit 1 Framing error Bit 5 Not functional
Bit 2 Receiver buffer overrun Bit 6 Not functional
Bit 3 Receiver empty / Transmitter full Bit 7 Break detected

SSEND AND SRECEIVE PROGRAMS

The files SSEND.S and SRECEIVE.S on the PROMAL disk are source programs for
transmitting files between computers with PROMAL, at speeds of up to 9600
baud on the Apple or 1200 baud on the Commodore 64. The files do not have to
be text files; any kind of PROMAL file can be sent.

The programs provided form a complementary pair. SSEND transmits a speci-
fied file using an error-correcting protocol, and SRECEIVE receives the file on
another computer and installs it on disk. The programs can be used to transfer
any size file at up to 9600 baud between computers in close proximity without a
modem, by using a simple "null modem" cable between serial ports, as shown
below. If used with a Commodore 64, we suggest you limit transmission to
baud.

The diagram below illustrates how to wire a direct-connect cable (null
modem), with pin connections for the Apple IIc 5 pin connector on port 2, or
the Commodore 64 RS-232 adapter model 1011A or similar level shifter.

Copyright (C) 1986 SMA Inc. Rev. C

600

Systems Manag Associates, Inc. DATA COMMUNICATIONS

Apple IIC Commodore RS-232 RS-232 Commodore Apple IIC
DIN-5 64 1011A signal signal 64 Port DIN-5
Pin # Pin # Name (#) Name (#) Pin #
1 6 DTR (6) DSR (20) 20 5
2 3 TD (3) RD (2) 3
3 7 GND (7) GND (7) 7 32 RD (2) TD (2) 2 2
5 20 DSR (20) am (6) 6

Two remote computers can also exchange files at the maximum baud rate
supported by the modem used (typically 300 or 1200 baud). When using a modem
instead of a direct connection, some modifications may need to be made to the
program to send modem control commands (such as to answer the phone). These
modifications are entirely dependent on the type of modem being used. Consult
your modem manual for further information.

To transmit a file, start the computer’s program first, for
example:

SRECEIVE MYFILE.T 1200

will receive a file called MYFILE.T at 1200 baud. Then start the transmitting
computer’s program (at the same baud rate, of course):

SSEND MYRTLE-T 1200

The file will be transmitted in IR blocks with a verification "handshake" after
each block is correctly received. If a block is garbled in transmission, the
receiving program requests a retransmission of that block. The program exits
when the entire file is received.

The source code for SSEND and SRECEIVE has comments which explain the
operation of this simple communications protocol in detail. You may freely
incorporate any part of these programs in your own projects.

The TINYTERM program provided in source form on the PROMAL disk is a
tiny terminal emulator program which provides the basic functions necessary to
access a remote computer using an external modem. This program provides a
"bare bones" communication program which can be used to communicate with many
remote time sharing services, such as Compuserve. It is not intended to
provide the functionality of commercially available communication packages, but
is a simple program to illustrate the use of T device. Advanced users may
enjoy enhancing it to a full communications package, perhaps adding the
ability to upload and download disk files, etc. You may need to modify the
program somewhat for use with your modem. We recommend 300 baud operation.

Copyright (C) 1986 SMA Inc.

receiving

Pin #

Computer A Computer B

DATA COMMUNICATIONS Systems Management Associates, Inc.

Data communications professionals know that programming serial data
transmission is seldom as easy as it looks. It is important to understand that
while the RS-232C document defines a "standard" way for computers to
communicate, it is an extremely general standard with many possible
variations. Not only can parameters such as baud rate and parity be selected
in a wide variety of permutations, but there is no standard way for programs to
address the modem itself. The port addresses for the modem are different on
each computer, and are even different on various serial boards or attachments
for the same computer. There is no agreement about what commands should be
sent to the modem to make it perform its special functions (such as dialing or
going “off hoo "). Worse yet, there are a maddening variety of software
"protocols" in use which govern the way information should be transferred
between devices attached with a serial interface.

All these factors make it impossible to make a "one size fits all" driver
for the T device. In implementing the T device, we have tried to make it easy
to use for the vast majority of cases, and not impossible for the rest. It is
entirely the responsibility of the programmer to insure proper data
communications for any particular piece of communications equipment. This
should be considered part of the application program.

Copyright (C) 1986 SEA Inc. Rev. C

T DEVICE NOTES

Syst-s Management Associates, Inc. DATA COMMUNICATIONS

$FFFF

OFREE

LOMEM -->
=saroo
(approx)

-->

-—>

osoac -->
=A200
(aPPIOX)

HIFREE -—>

——>

——>

APPENDIX C

HEIDRY HAP

EDITor or
Application EXECUTIVE Auxilliary RAM
running running under ROMS

<-or—>
<-- $FFFF

CTRL-B Buf.
& FKEY defs

<-- SFEOO
Commodore Commodore EXECUTIVE
"Kernal" "Kernal" or

ROMS ROMs EDITor
and swap

I/O ports I/O ports area
<_..

L Buffer
$FE00 through $FFFF of the

EDIT EXEC vars swap area is used for
code function key definitions

(*see note) ' EXECUTIVE and CTRL-B buffer.
code /

EDIT vars
(scratch) *Note: An application program can

<-- HIMEM also use the space between OSORG
Shared vars and MEMLIM for program or variable

<-- WLIM space.
Moveable
Workspace A total of about 33K bytes is
(w) Buf. available for user programs,

<-- exclusive of all buffers,
Free runtime package and library
Space requirements, etc. If NOREALS

is executed (discard REALs),
Programs about 2.5K of additional space

& is available (moves LOMEM down)
OWN vars

See the LOADer section for
PROMAL further information.
Runtime

System RAM All memory partitions shown here
are on exact page boundaries.

Copyright (C) 1986 SHA Inc. Rev. C

$0000

MEMLIM
=$D000

$0000

COMMODORE 64

MEMORY HAP Syst-sment Associates, Inc. G-l

0300

OEOO
4400
4FOO

A200

D000
FEOO

D000

0001
0010
0015
0019
002A
0042
0056
0089
00F2
OOFE

OlFF
0333
03FF

07E7
O7FF

08FF
09FF
OAFF

ODFF

43FF
4EFF
AIFF

CFFF

FDFF
FFFF

FFFF

6510 On-Chip I-O port
Available (Used by BASIC only)
Reserved for PROMAL enhancements
Used by PROMAL
Used by C-64 Kernal
Used by PROMAL
Used by C-64 Kernal
Used by PROMAL
Used by C-64 Kernal
Available
Used by C-64 Kernal

Hardware Stack
Used by C-64 Kernal
Available for M/L programs (see note

Screen memory
Sprite data pointers

Floating point stack
Heap for Local Variables
Scratchpad for I/O, encode/decode, etc.

PROMAL System Data Area, see PROSYS.S for details. Reserved.

PROMAL Vectors, Jump Table, Nucleus, Library, & DYNODISK drivers.
PROMAL REAL processing routines, or Allocatable user memory.
(Approx.) Allocatable memory for user programs & workspace.

(Approx.) EDITor/EXECUTIVE space, or user programs & variables.

(Approx.) EDITor/EXECUTIVE swap area and L device (RAM)
Function key defs and CTRL-B buffer (RAM)

C-64 Kernal ROMs, VIC, SID, and I0.

1. All addresses subject to change without notice.
2.
3.
4.

$0334 - $036F reserved for PROMAL hi-res graphics package.
File PROSYS.S contains definitions of many system locations.
See the Chapter 8 of the PROMAL LANGUAGE MANUAL and Appendix H for further

information on memory allocation.

Copyright (C) 1986 an Inc. Rev. c

Notes:

COMMODORE 64

Address Description

Systems Management Associates, Inc. MEMORY HAP

APPLE II

Application EXECUTIVE EDITor
running running running

<-or-> <-or->
$FFFF -->

PRODOS PRODOS PRODOS

PROMAL sys. PROMAL sys. PROMAL sys.
MEMLIM ——>
=HIMEM EXEC vars
=$8E00

EDIT
Shared EXECUTIVE code

variables code

EDIT vars

<-— HIFREE

Free Auxiliary 64K
Space Memory bank

<-- LOFREE
Programs PRODOS

&
OWN vars

--> EXECUTIVE
Disk Bufs. swap area

PROMAL
Runtime

EDIT swap
System RAM area

-—>
WLIM -->

Approximately 25K bytes =$5BOO
available for user Workspace
programs, exclusive of buffer
all buffers, runtime
package, library routines WORG -->
etc. About 2.5K additional =$1200 CTRL—B Que.
can be freed up by $1100 —->
executing NOREALS (discards F-key defs.
REAL arithmetic), and up $1000 -->
to 2K additional can be L Device
freed up by selecting $0800 -->
fewer than 3 PRODOS disk
buffers (BUFFERS command)

Copyright (C) 1986 SMA Inc. Rev. C

LOMEM
=$29oo
(ApprOX)

$BE00

OSORG=$6100

MEMORY HAP Systems Management Associates, Inc. G-3

0800
0900
OAOO

OBOO

0000
OOOF
004A
004E
0056
0030

0100
0200 -
0280
OZCO
0300
03F0

0400

OEOO
1100
1000
lDOO
2900 —
6100

8E00
BFOO
C000

000E
0049
004D
0055
OOAF
OOFF

01FF
027E
OZBF
02FF
O3EF
03FF

07FF

08FF
O9FF
OAFF

ODFF

10FF
lBFF
1CFF
28FF
BBFF

SBFF

BEFF
BFFF
FFFF

Available
Apple II Monitor
Available
Apple II Monitor
Used by PROMAL
Available

Hardware Stack
Apple input buffer, used for scratch
Apple input buffer; Scratch path name buffer for PROMAL
Apple input buffer, used for scratch
Available (See note 2)
Apple II Vectors

Text and low-resolution graphics display buffer

Floating point stack
Heap for local variables
Scratchpad for I/O, encode/decode, etc.

PROMAL system data area (see PROSYS.S file). Reserved.

(approx) PROMAL Vectors, Jump Tables, tables, etc.
(approx) PROMAL REAL processing, or Buffers / allocatable space
(can vary) File descriptor table
(can vary) Disk buffers (3) for ProDOS
(can vary) Allocatable memory for user programs & variables

System space for EXECUTIVE & EDIT. Programs may overwrite.

PROMAL nucleus and library routines.
ProDOS page
Apple I/O & system memory.

Auxiliary (bank-switched) memory:

Notes:

5BFF
BEFF

Reserved for L device (library text).
Reserved for function key strings.
Reserved for CTRL-B buffer.
Workspace buffer.
Swap area for EDIT and EXECUTIVE.

1. All addresses subject to change without notice.
2. $0334 - $036F reserved for PROMAL hi-res graphics package.
3. File PROSYS.S contains many definitions of system locations.
4. NOREAL command causes allocatable space to start at 1E00 normally.
5. BUFFERS command can change allocatable space.
6. Developer's version allows applications without auxiliary (bank switched)
memory or 80 column card to run (see Developer’s guide).

Copyright (C) 1986 SMA Inc. Rev. C

OFFF
lOFF
1HT

APPLE II

Address Description

C-4 Systems Management Associates, Inc. MEMORY HAP

j

I—Iu-—- —II

—.--I-..II..--III-
_-=I:I==-—"'—""

l' .I. LIT-.31.— n—u

Ilfill'qilmml ||||||HIIIIIIIIHTIiH"I'|.'I!'14|-fl'
I-lH '.'. u

:IIHI-II 'fllll

§

The following global variables more precisely defined in the file
PROSYS.S unless otherwise noted.

OBBO-OBBB
OBCO

0C00-0C03

OCOD
0C12-0C15
0016-OC17
0C18-0C19
OclA-OCIB
0C1C-0CID
001E
OCIF
0C22-0C23
OCZB-OCZC
0C2D-0C2E
0C51-0C52
0C53-0C57
OCF2
OCFF
0D00-OD50
0D51
0D52-0D73
0074-0DC4
ODCS-ODCC
ODCD-ODCE
ODDB-ODDC
ODDD-ODDE
0DE9
ODEA
ODEB
ODEC
ODED
ODEE
ODEF
ODFO
ODF6
ODFD
ODFF

1000
1001
1002
1003
1004
1005

LDNAME - Command name of last LOAD attempt
LDNOCHK - Flag, $80 if bypassing checksum check during loading

STDIN, STDOUT File handles (defined in LIBRARY.S file)
IOERROR — Error code from disk functions (LIBRARY.S)
BFILTYP - System-dependent file type for OPEN.
DIOERR - Disk I/O error, =ok,1=fu11,2=read err,3=wrt err.
DFEXT - 'C’, default file extension for PROMAL files.
DATE - Day, Month, Year-1900, 1 byte each
LOMEM - Start of Allocatable Memory
LOFREE - Next available address for program load, $XX00
HIFREE - First address not allocatable for programs, $XXOO
HIMEM - End of normally allocatable memory + 1, $XX00
LDERR - Loader error return code, $00=success
NLT - Number of loaded modules, including EDITor, EXEC.
RANDWD - Seed for random number generator (non-zero)
OSORG - Starting address for EDITor/EXECUTIVE, SXXOO
MEMLIM - End of usable memory (if EDITOR discarded, C-64).
ML? - Address of subroutine called by PROC JSR
REGA, REGX, etc. - Registers for GO command or BRK
NOFNCHK - Flag, if TRUE defeat default file extension
BLINKD - Blink delay for cursor. >$7f=solid, O=invisib1e.
CLINE - Current Command line, complete (LIBRARY.S)
NCARG - Number of arguments passed on command line (LIBRARY.S)
CARG - Array of pointers to arguments on comd. line (LIBRARY.S)
COMD - Command line split into argument strings
WORG, WPTR, WEOF, WLIM - Pointers for Workspace (see also ODDB)
LORG, LPTR, LEOF, LLIM — Pointers for Library (under ROMS, C-64)
WSIZE - Current Workspace size
GVORG - Address of start of all shared variables, $XXOO
TBAUD T baud (3=110,6=300,7=600,8=1200,$A=2400,$C=4800,$E=9600)
TPARITY — device parity (0=none,1=odd,2=even,3=mark,4=space)T
TDATAB - T device data bits (0=8,1=7,2=6,3=5)
TSTOPB - T device stop bits (0=2,1=2)
TEOFCH - device end-of-file char for input (defau1t=CTRL-Z)
TDEVALF - T linefeed, bit 7=1=add on output, bit 6=l=strip on input
TDEVRAW - T Raw mode flag, $80 = pass all chars through as is
TDEVST - T device status for last operation, system dependent
DRTERR - Copy of runtime error (See Developer’s Guide)
PBLKCNT # bytes actually written on last PUTBLKF
ALPHALK - Keyboard Alpha lock flag, $80 upper case only

BKEYDEL Key for delete with pullback
BKEYINS Key for begin insert mode
BKEYJS - Key for jump to first char of line
BKEYJE Key for jump to last char of line
BKEYCEL Key for clear to end of line
BKEYALK - Key for alpha lock toggle

Copyright (C) 1986 SHA Inc.

Address Description

IMPORTANT SYSTEM MTA AREA ADDRESSES

MEMORY HAP Systems Management Associates, Inc.

System addresses for Apple II only:

1006 BKEYCAN - Key for cancel line
1007 BKEYBT — Key for backtrack prior line
1008 BKEYBS - Key for backspace
1009 BKEYTAB - Key for tab (indent)
100A BKEYRT — Key for cursor right
1003 BKEYLFT - Key for cursor left
100C BKEYFKl - Key for first function key
100D BKEYFKL - Key for last function key
100E BKEYEOF - Key for E-O-F from keyboard

Note: All addresses subject to change without notice.

0068-006A PREFIX Current drive prefix string
OCFB EDRES - Flag, $80 if EDITOR is in memory, $00 not
ODEO C64DDVO C-64 disk device # for logical drive 0 (default=8)
ODEl C64DDV1 — c-64 device # for drive 1 (9 for 1541, 8 for MSD)
0DE2 C64N1541 - Flag, $80 = permanently disable DYNODISK
0DE3 C64DYNO Flag, $80 = DYNO on , $00 = DYNODISK off
0DF3 C64PSA Secondary Address for Printer OPEN (See Appendix D)
0DF4 C64PUL Printer upper/lower case switch flag (See Appendix D)
ODFS 064PDV Device number for printer (See Appendix D)

0C68-OCA3 PREFIX Current volume & pathname (ends with ’I')
ODEO ABORTCH Program abort character (default=CTRL-C, $00=none)
0DE5 RAMUNIT IRAM unit number, normally $30=slot 3 drive 2
0DE6 DSLOT Slot for 1:, 2: drive, normally 6
ODFl-ODFZ TDEVTBL Address of T device driver table (see Appendix F)
0DF3 APLPALF Auto line feed flag for printer ($80=yes, $00=no)
0DF4-ODF5 APLPJT Pointer to printer driver vector table (points

to Init ptr word, Output ptr word (A=char)
ODFB-ODFE DSKBUFS Pointer to disk buffers.

1. All addresses subject to change without notice.
2. File PROSYS.S contains the definitions of these and other system

locations.

Copyright (C) 1986 SHA Inc. Rev. C

Sfitem addresses for Commodore 64 only:

G—6 Systems Management Associates, Inc. MEMORY HAP

