
Programming
Languages for the
Commodore 64:

Glenn Holmer/VCFMW 2016

PROMAL
Revisited

speaker bio

● a.k.a. “Cenbe”, “ShadowM”
● web site at www.lyonlabs.org
● long-time collector of Commodore 64
compilers/interpreters/assemblers

● a neglected area for Commodore 64
enthusiasts and collectors

● this is part of a series of talks
on some of the more interesting
programming languages available

PROMAL revisited

● spoke about PROMAL here in 2014
● had just acquired the full version
after decades of searching

● the beer goggles are off!
● let's talk about some of PROMAL's
shortcomings... and how they might
be addressed

PROMAL shortcomings

● only two drives supported (not
uncommon for software of that time)

● drives named 0: and 1: (confusing
for Commodore users)

● can't easily change which device 0:
and 1: point to

● can't issue disk commands to
arbitrary devices (just 0: and 1:)

● lack of good disk utilities!

PROMAL disk utilities: getcmddate

● takes device number as argument
● sends T-RD (time read decimal),
then sets PROMAL system variables

● 31,SYNTAX ERROR means no clock on
device

● uIEC response inconsistent w/CMD
● will run from bootscript.j
(autoexec batch script)

“diskutils” module

● getlfn (get first free file number)
● drvquery (query attached drives)
● drvdesc (get drive type desc.)
● getparttype (get partition type)
● partdesc (get part. type desc.)
● sendcmd (send disk command)
● readcmd (read cmd. channel output)
● getdirhead (get directory header)
● readsect (read disk sector)

PROMAL disk utilities: drives

● calls drvquery, which loads an
exported 23-byte array holding the
drives list (8-30)

● if drives[dev-8] is 0, no device
attached at that address

● can look up the drive type with
drvdesc to get human-readable type

PROMAL disk utilities: pwd

● easy on a CMD drive, which provides
a track and sector pointer to the
parent directory header

● more of a kludge on uIEC; you have
to use CD← until it fails, then CD
back to the constructed path
(but it works within a DNP image)

● both can use G-P command for info
● consider path to be // if you're in
a 15x1 emulation partition on CMD
(or a disk image on the uIEC)

● 1581 “directories” not supported

PROMAL disk utilities: ls

● what's the PROMAL equivalent of
"malloc some dirent structs"?

● can't just fake a struct with a
series of variables because arrays
and scalars are stored differently

● solution: use byte array w/offsets
● memory allocation done manually
based on system variables

● options: drive number, wildcards,
-n (sort by name), -t (sort by
timestamp on SD or CMD drive)

PROMAL disk utilities: cp

● supports copying across devices,
partitions, and directories

● -s and -d required for device nos.
● CMD syntax
● proper wildcards (not like C=)
● can use "." as destination
● prompts for replace
● only supports PRG and SEQ

bottom line: pros

● good high-level language features
(looping, local variables)

● good low-level language features
(pointers!)

● good multi-module support,
sophisticated loader

● support for assembly modules
(with jsr keyword or jump table)

● shell with batch scripts and
command recall

● excellent documentation, access to
internals

bottom line: cons

● limited drive support
● poor disk utilities
● no linkage editor, have to manually
load library modules (and dependent
code has to be recompiled if the
library module changes)

● keeping modules loaded wherever
possible requires frequent use of
"unload" command

conclusion

When all is said and done, still
(currently) my favorite language to
use on the Commodore 64.

PROMAL RULEZ OK!

resources

● visit my site (www.lyonlabs.org) to
get disk images and documentation:

/commodore/onrequest/PROMAL/index.html

● there's also a cheat sheet there
with commonly used commands &c.

● I can demo PROMAL and other
programming languages at my table

http://www.lyonlabs.org/

DEMO
(slides and sample code
 are on my web site)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

