
GeckOS – a Unix-like
6502 operating system

Glenn Holmer
VCFMW, 2019-09-14

Speaker Bio

✔ a.k.a. "Cenbe"
✔ retired Java programmer/Linux sysadmin
✔ collector of programming languages and

operating systems for the Commodore 64:

https://www.lyonlabs.org/commodore/

https://www.lyonlabs.org/commodore/

Happy 50th, Unix!

wait... “Unix” on a 6502?

ARE YOU
CRAZY?

wait... “Unix” on a 6502?

Multi-tasking on a 6502 faces significant obstacles:

✔ typically no hardware memory management
✔ no hardware process protection (“ring 0”)
✔ limited number of registers
✔ single, fixed-location, 256-byte stack

“Unix” on a Commodore 64?

✔ It’s been tried with varying degrees of fidelity, e.g.
GeckOS, LUnix, Asterix, ACE...

✔ None of these are still being developed; most
developers are no longer active in the
Commodore community.

✔ GeckOS seems the most complete, most Unix-like
and easiest to work with.

GeckOS history

✔ Written by André Fachat,
originally for the CS/A65
(a 6502 computer with a
MMU that he built in 1989).

✔ Later expanded to run on
other architectures (PET,
Commodore 64).

✔ 2.0.9 released in 2013.
✔ Source available (GPL V2).

André Fachat

CS/A65
http://www.6502.org/users/andre/csa/index.html

GeckOS features

✔ preemptive multi-tasking with priorities,
multi-threading (max. 12 tasks, 12 threads)

✔ signals, semaphores
✔ redirection, piping, environment variables
✔ a standard library (lib6502)
✔ cross-assembler “xa”

✗ use 2.1.4h with GeckOS (not newer versions)
✗ output is o65 relocatable file format
✗ can produce label xref with addresses

Cenbe’s Commentary on GeckOS

I’ve been working on an analysis of GeckOS for
those who would like to follow along at home:
https://www.lyonlabs.org/commodore/onrequest/geckos-analysis.html

✔ source layout
✔ system initialization
✔ IRQ service routine
✔ forking new processes
✔ scheduler, task switching
✔ running programs from the shell

So how does GeckOS do a task switch?

✔ An interrupt is generated every ~20ms by CIA 1
timer B to run the scheduler.

✔ The stack is split into two parts: 192 bytes for the
kernel, and 64 bytes for user threads. There is a
save buffer for each thread’s stack.

✔ To switch between user space and kernel space,
the user and system stack pointers are swapped.

✔ During a context switch, the current thread’s stack
is saved and the new thread’s is swapped in.

DEMO
✔ shell (both), monitor
✔ forking (one program loads and runs another)
✔ backgrounding a program (“the Schema demo”)
✔ signals (sending messages between programs)
✔ semaphores (blocking on available resource)

forking

lda #<forkstrc
ldy #>forkstrc
jsr forkto ;returns child PID in .X

forkstrc
.byt STDIN,STDOUT,STDERR,"forked",0,0

signals

sending: receiving:

lda #SIG_USR1 lda #<sigresp
ldx childpid ldx #>sigresp
sec sec
jsr SENDSIG jsr SETSIG
 lda #SIG_USR1
 clc
 jsr SETSIG

semaphores

locking:

ldx #SEM_CENBE
sec ;clc blocks until free
jsr PSEM ;returns E_OK or E_SEMSET

freeing:

ldx #SEM_CENBE
jsr VSEM

What can I do with GeckOS?

✔ Hack on it! Big fun!
✔ Learn about operating systems
✔ Write a killer app!
✔ but first...

possible extensions/improvements

✔ ctrl-C in shell to end wayward program
✔ store program names in process table
✔ find a way to retrieve program exec address
✔ write a ps command for lsh
✔ Grand Unification of the Shells
✔ add devices: CMD HD, REU (filesystem?),

µIEC and 1541 Ultimate support
✔ 1541 Ultimate networking
✔ native speeder in the filesystem?

resources

✔ GeckOS (source, tools, docs, disk images):
http://www.6502.org/users/andre/osa/index.html

✔ online HTML documentation:
https://www.lyonlabs.org/commodore/onrequest/GeckOS-docs/index.html

✔ Cenbe’s Commentary on GeckOS:
https://www.lyonlabs.org/commodore/onrequest/geckos-analysis.html

QUESTIONS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

