

Speaker Bio

✔ a.k.a. "Cenbe"
✔ retired Java programmer/Linux sysadmin
✔ collector of programming languages and

operating systems for the Commodore 64:

https://www.lyonlabs.org/commodore/

https://www.lyonlabs.org/commodore/

wait... “Unix” on a 6502?

ARE YOU
CRAZY?

wait... “Unix” on a 6502?

Let’s compare a Commodore 64 to the machines
that early versions of Unix ran on:

Processor speeds were comparable to that of a ‘64,
but the architecture was very different.

Of course, there are the registers...

PDP-7 PDP-11 Commodore 64

memory: 16K 24K 64K

CS/A65
http://www.6502.org/users/andre/csa/index.html

GeckOS features

GeckOS is a Unix-like multitasking operating
system for the 6502 CPU. It supports:

✔ task priorities, multi-threading
✔ virtual consoles
✔ signals, semaphores
✔ backgrounding and redirection
✔ piping
✔ environmental variables
✔ relocatable file format

DEMO
✔ shell (both), monitor
✔ forking (one program loads and runs another)
✔ backgrounding a program (“the Schema demo”)
✔ signals (sending messages between programs)
✔ semaphores (blocking on available resource)
✔ new ps and kill commands

This is a very recent build of GeckOS.

original info command (old shell)

new ps command (lsh shell)

GETINFO and the task table

✔ info (the old shell’s “ps”) calls the kernel
GETINFO API, which reads the task table and
returns information about all processes.

✔ It uses the program communication buffer
(PCBUF, a.k.a. SYSBUF) to build a table
(since programs should not have direct access
to the task table).

✔ The task table did not originally have entries for
either process name or exec address, although
the GETINFO table has one for name.

adding process names (stdlib programs)

✔ For lib6502 programs, the name can be found in
the LIBSAVE structure which is populated when a
program is started. This structure is pointed to from
the task table.

PROBLEM: the kernel shouldn’t assume that
programs are written using the standard library,
and shouldn’t access the LIBSAVE structure, as it is
lib6502-specific.

adding process names (kernel programs)

✔ For init and the device drivers, it’s possible to get
the name by walking the ROM image headers in
the same order that kernel startup does.

PROBLEM: this breaks if kernel initialization
changes... it’s also a filthy kludge!

Let the kernel do it!

SOLUTION: the kernel FORK routine takes
process name and exec address as parameters; it
should just save them in the task table.

PROBLEM: lib6502 programs pass the program
name with a stream number in the first byte.

SOLUTION: change lib6502 to pass the stream
number as a parameter to FORK (kernel passes
this byte back in .A when the process starts).

adding exec address (kernel programs)

✔ The program headers in the kernel image contain
the exec address, so it’s an easy matter for the
kernel to put it in the task table when starting one
of these programs.

adding exec address (stdlib programs)

✔ The exec address is passed to FORK, and could be
stored just before it passes control to the program.

PROBLEM: lib6502 programs set a start address
of lib6502’s libfork routine (which loads and
relocates the program).

SOLUTION: provide a SETINFO API that would
allow lib6502 to update the task table after FORK
has been called.

A New Golden Age for GeckOS

Now that we can debug more easily, anything is
possible:

✔ The Grand Unification of the Shells
✔ better support for CMD HD, µIEC, 1541 Ultimate

(partitions, subdirectories, disk images...)
✔ 1541 Ultimate networking
✔ native speeder in the filesystem?
✔ your project here

resources

✔ GeckOS (source, tools, docs, disk images):
http://www.6502.org/users/andre/osa/index.html

✔ GeckOS source on GitHub:
fachat/GeckOS-V2

✔ online HTML documentation:
https://www.lyonlabs.org/commodore/onrequest/GeckOS-docs/index.html

✔ Cenbe’s Commentary on GeckOS:
https://www.lyonlabs.org/commodore/onrequest/geckos-analysis.html

QUESTIONS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

