1 booting
"fsdeu "": ok'!
""fsiec "': ok'!
""shell b 'auto.bat

'c:15sh —d Cc: "':
sh vB. 1 21deci997 (c> A. Fachat

> ok'
Prepared restart!'!

FUunam
GeckDS/ﬁBS 2.8 6518 C64 1ib6582 8.6

by |




Speaker Bio

v a.k.a. "Cenbe"

v retired Java programmer/Linux sysadmin

v collector of programming languages and
operating systems for the Commodore 64:

https://www.lyonlabs.org/commodore/


https://www.lyonlabs.org/commodore/







wait... “Unix” on a 650272

Let’s compare a Commodore 64 to the machines
that early versions of Unix ran on:

PDP-7 PDP-11 | Commodore 64

memory: 16K 24K 64K

Processor speeds were comparable to that of a ‘64,
but the architecture was very different.

Of course, there are the registers...



GeckOS history

v Written by André Fachat, N — gy
originally for a 6502 —a ™
computer with an MMU that Lﬂmj = -
he built in 1989. .

v He later ported it to run on
the PET, 8296, and Cé4.

v Development is very active!

v Source is GPL, on GitHub
(fachat/GeckOS-V2).

André Fachat




L

T
=)

4
’

| I
n




GeckOS features

GeckOS is a Unix-like multitasking operating
system for the 6502 CPU. It supports:

v task priorities, multi-threading
v virtual consoles

v signals, semaphores

v backgrounding and redirection
v piping

v environmental variables

v relocatable file format



DEMO

v shell (both), monitor

v forking (one program loads and runs another)

v backgrounding a program (“the Schema demo”)
v signals (sending messages between programs)

v semaphores (blocking on available resource)

v new ps and kill commands

This is a very recent build of GeckOS.



-
MR R gl in]un]onlunlim]un] n]un]un |un)
L Lo Lo Lo S Sy S el S S S S
=
]|k (gl [valve]u]vuvn] vl vafua]un fuw)
v P M alvafen e funloafonva fow e un

R -MQic]
e e L L Sy S R S R S S E 50

Lol -halQidtic
)i lialifm lomlinlonlialinlomlinlnla To)
RO TDRODODODOD
pleelumlinlimnnunlinlue lunlueluwl e fun Lundus)

p JoalialinlialFlunlinlinlialinlinlunlinlia li)
NMToOTTOOODODOO0GE

(L1 0 D 00 0 D 0 0 0 0 0
o A T

Ml
=M No=lia]onlin]on]in]n]onlinlon] ca]on o)

=um]ialinlvnlielunlialin]onlia il va lunla e
([Fijv=lia]vnlialin]inlie]in] e lon]va]vnfun ] unus)

ol = = LD Ca o S G S G Ca
= lv=luelumlimluin lnlue lumlue Juwl e s Lunfus)

=
=
L
=
=
L
1=
==
]

o et B0 L L D00 T A S L E S DD
3 00 20w ) 3 L 0 o = D T D D D




ok!

Fachat

!
m
o
=
!
=
M

L
=g =)

iC
C:

th
=
TN
a -
=
=
|

-15h —d -
21deci133Y <c) A.

“"shell b
Preparﬁd rectart!
C

Start

"%Edeu
“"foiecC

csh wvB.1

-
o ot o Bt S G D
ol e e e B2 S 50
=
e ! o ol £ G
] un | TR e o)

o et 1 Y = £
e L, Lt Lt S 2 S0

L SR 0 ]
) e oa] T
DR L, T
plealemlialimfun]an]

p Joulialialia PR
pl el g g

Ml L S G G S C
B L CACI S

oL e e e v e e
e 5 5 5 0 D

W= RS LI
QS L T -
3 L= Ll D= 2017
Ll SO QL0 R = )

™



GETINFO and the task table

v info (the old shell’s “ps”) calls the kernel
GETINFO API, which reads the task table and
returns information about all processes.

v |t uses the program communication buffer
(PCBUF, a.k.a. SYSBUF) to build a table
(since programs should not have direct access
to the task table).

v The task table did not originally have entries for
either process name or exec address, although
the GETINFO table has one for name.



adding process names (stdlib programs)

v For lib6502 programs, the name can be found in
the LIBSAVE structure which is populated when a
program is started. This structure is pointed to from
the task table.

PROBLEM: the kernel shouldn’t assume that

programs are written using the standard library,
and shouldn’t access the LIBSAVE structure, as it is

lib6502-specific.



adding process names (kernel programs)

v For init and the device drivers, it's possible to get
the name by walking the ROM image headers in
the same order that kernel startup does.

PROBLEM: this breaks if kernel initialization
changes... it's also a filthy kludgel!



Let the kernel do it!

SOLUTION: the kernel FORK routine takes
process name and exec address as parameters; it
should just save them in the task table.

PROBLEM: lib6502 programs pass the program
name with a stream number in the first byte.

SOLUTION: change lib6502 to pass the stream
number as a parameter to FORK (kernel passes
this byte back in .A when the process starts).



adding exec address (kernel programs)

v The program headers in the kernel image contain
the exec address, so it's an easy matter for the
kernel to put it in the task table when starting one
of these programs.



adding exec address (stdlib programs)

v The exec address is passed to FORK, and could be
stored just before it passes control to the program.

PROBLEM: lib6502 programs set a start address
of lib6502’s 1ibfork routine (which loads and

relocates the program).

SOLUTION: provide a SETINFO API that would
allow lib6502 to update the task table after FORK

has been called.



A New Golden Age for GeckOS

Now that we can debug more easily, anything is
possible:

v The Grand Unification of the Shells

v better support for CMD HD, uleEC, 1541 Ultimate
(partitions, subdirectories, disk images...)

v 1541 Ultimate networking

v native speeder in the filesystem?

v your project here



resources

v GeckOS (source, tools, docs, disk images):
http://www.6502.0rg/users/andre/osa/index.html

v GeckOS source on GitHub:
fachat/Geck0S-V2

v online HTML documentation:

https://www.lyonlabs.org/commodore/onrequest/Geck0S-docs/index.html

v Cenbe’s Commentary on GeckOS:

https://www.lyonlabs.org/commodore/onrequest/geckos-analysis.html



QUESTIONS



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

